Header logo is


2018


Co-Registration -- Simultaneous Alignment and Modeling of Articulated {3D} Shapes
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

ps

text [BibTex]

2016


Skinned multi-person linear model
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

Google Patents [BibTex]

2016


Google Patents [BibTex]


Perceiving Systems (2011-2015)
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]

2013


no image
Dynamics of nanodroplets on structured surfaces

Rauscher, M.

In Nanodroplets, 18, pages: 143-167, Lecture Notes in Nanoscale Science and Technology, Springer, New York, 2013 (incollection)

Abstract
Editors:Zhiming M. Wang

icm

DOI [BibTex]

2013


DOI [BibTex]


no image
Wetting Phenomena on the Nanometer Scale

Rauscher, M., Dietrich, S., Napiórkowski, M.

In Nanoscale Liquid Interfaces - Wetting, Patterning and Force Microscopy at the Molecular Scale, pages: 83-154, Pan Stanford Publishing Pte. Ltd., Singapore, 2013 (incollection)

icm

DOI [BibTex]

DOI [BibTex]


Class-Specific Hough Forests for Object Detection
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

ps

code Project Page [BibTex]

code Project Page [BibTex]

2007


no image
Inhomogeneous platelets and rod fluids

Harnau, L., Dietrich, S.

In Soft Matter, Vol. 3, pages: 156-311, Wiley-VCH, Weinheim, 2007 (incollection)

icm

[BibTex]

2007


[BibTex]

2005


no image
The Boolean Model: from Matheron till today

Stoyan, D., Mecke, K.

In Space, Structure and Randomness: contributions in honor of Georges Matheron in the fields of geostatistics, random sets, and mathematical morphology, 183, pages: 151-182, Lecture Notes in Statistics, Springer, New York, 2005 (incollection)

icm

[BibTex]

2005


[BibTex]

2003


no image
Diffusion in quasicrystals

Mehrer, H., Galler, R., Frank, W., Blüher, R., Strohm, A.

In Quasicrystals - Structure and Physical Properties, pages: 312-337, Wiley-VCH, Weinheim, 2003 (incollection)

icm

[BibTex]

2003


[BibTex]