Header logo is


2020


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

2020


DOI [BibTex]

2016


Thumb xl toc image
Wireless actuation with functional acoustic surfaces

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Adams, F., Fischer, P.

Appl. Phys. Lett., 109(19):191602, November 2016, APL Editor's pick. APL News. (article)

Abstract
Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant microcavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of similar to 0.45mN is measured on a 4 x 4 mm(2) functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 x 2.6 x 5 mm(3) in size and generates a stall torque of similar to 0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

pf

link (url) DOI Project Page [BibTex]

2016


link (url) DOI Project Page [BibTex]


Thumb xl toc image
Nanomotors

Alarcon-Correa, M., Walker (Schamel), D., Qiu, T., Fischer, P.

Eur. Phys. J.-Special Topics, 225(11-12):2241-2254, November 2016 (article)

Abstract
This minireview discusses whether catalytically active macromolecules and abiotic nanocolloids, that are smaller than motile bacteria, can self-propel. Kinematic reversibility at low Reynolds number demands that self-propelling colloids must break symmetry. Methods that permit the synthesis and fabrication of Janus nanocolloids are therefore briefly surveyed, as well as means that permit the analysis of the nanocolloids' motion. Finally, recent work is reviewed which shows that nanoagents are small enough to penetrate the complex inhomogeneous polymeric network of biological fluids and gels, which exhibit diverse rheological behaviors.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl psychscience
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M. Q., Streuber, S., Hahn, C. A., Black, M. J., O’Toole, A. J.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl toc image
Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots

Palagi, S., Mark, A. G., Reigh, S. Y., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Sanchez-Castillo, A., Kapernaum, N., Giesselmann, F., Wiersma, D. S., Lauga, E., Fischer, P.

Nature Materials, 15(6):647–653, November 2016, Max Planck press release, Nature News & Views. (article)

Abstract
Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

pf

Video - Soft photo Micro-Swimmer DOI [BibTex]

Video - Soft photo Micro-Swimmer DOI [BibTex]


Thumb xl toc image
Capture of 2D Microparticle Arrays via a UV-Triggered Thiol-yne “Click” Reaction

Walker (Schamel), D., Singh, D. P., Fischer, P.

Advanced Materials, 28(44):9846-9850, September 2016 (article)

Abstract
Immobilization of colloidal assemblies onto solid supports via a fast UV-triggered click-reaction is achieved. Transient assemblies of microparticles and colloidal materials can be captured and transferred to solid supports. The technique does not require complex reaction conditions, and is compatible with a variety of particle assembly methods.

pf

DOI [BibTex]


Thumb xl toc image
Magnesium plasmonics for UV applications and chiral sensing

Jeong, H. H., Mark, A. G., Fischer, P.

Chem. Comm., 52(82):12179-12182, September 2016 (article)

Abstract
We demonstrate that chiral magnesium nanoparticles show remarkable plasmonic extinction- and chiroptical-effects in the ultraviolet region. The Mg nanohelices possess an enhanced local surface plasmon resonance (LSPR) sensitivity due to the strong dispersion of most substances in the UV region.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl cover nature 1j 00008
Holograms for acoustics

Melde, K., Mark, A. G., Qiu, T., Fischer, P.

Nature, 537, pages: 518-522, September 2016, Max Planck press release, Nature News & Views, Nature Video. (article)

Abstract
Holographic techniques are fundamental to applications such as volumetric displays(1), high-density data storage and optical tweezers that require spatial control of intricate optical(2) or acoustic fields(3,4) within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront(5,6) in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography(7) skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources(3,4,8-12); however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

pf

Video - Holograms for Sound DOI Project Page [BibTex]

Video - Holograms for Sound DOI Project Page [BibTex]


Thumb xl toc image
A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)

Garbacz, P., Fischer, P., Kraemer, S.

J. Chem. Phys., 145(10):104201, September 2016 (article)

Abstract
Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the F-19 NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal. Published by AIP Publishing.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Active Nanorheology with Plasmonics

Jeong, H. H., Mark, A. G., Lee, T., Alarcon-Correa, M., Eslami, S., Qiu, T., Gibbs, J. G., Fischer, P.

Nano Letters, 16(8):4887-4894, July 2016 (article)

Abstract
Nanoplasmonic systems are valued for their strong optical response and their small size. Most plasmonic sensors and systems to date have been rigid and passive. However, rendering these structures dynamic opens new possibilities for applications. Here we demonstrate that dynamic plasmonic nanoparticles can be used as mechanical sensors to selectively probe the rheological properties of a fluid in situ at the nanoscale and in microscopic volumes. We fabricate chiral magneto-plasmonic nanocolloids that can be actuated by an external magnetic field, which in turn allows for the direct and fast modulation of their distinct optical response. The method is robust and allows nanorheological measurements with a mechanical sensitivity of similar to 0.1 cP, even in strongly absorbing fluids with an optical density of up to OD similar to 3 (similar to 0.1% light transmittance) and in the presence of scatterers (e.g., 50% v/v red blood cells).

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl webteaser
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

ps

pdf web tool video talk (ppt) [BibTex]

pdf web tool video talk (ppt) [BibTex]


Thumb xl ijcv tumb
Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.

International Journal of Computer Vision (IJCV), 118(2):172-193, June 2016 (article)

Abstract
Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.

ps

Website pdf link (url) DOI Project Page [BibTex]

Website pdf link (url) DOI Project Page [BibTex]


Thumb xl toc image
Dispersion and shape engineered plasmonic nanosensors

Jeong, H. H., Mark, A. G., Alarcon-Correa, M., Kim, I., Oswald, P., Lee, T. C., Fischer, P.

Nature Communications, 7, pages: 11331, March 2016 (article)

Abstract
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figures of merit (FOMs). Herein we introduce the idea of sensitivity enhancement of LSPR sensors through engineering of the material dispersion function. Employing dispersion and shape engineering of chiral nanoparticles leads to remarkable refractive index sensitivities (1,091 nmRIU(-1) at lambda = 921 nm) and FOMs (>2,800 RIU-1). A key feature is that the polarization-dependent extinction of the nanoparticles is now characterized by rich spectral features, including bipolar peaks and nulls, suitable for tracking refractive index changes. This sensing modality offers strong optical contrast even in the presence of highly absorbing media, an important consideration for use in complex biological media with limited transmission. The technique is sensitive to surface-specific binding events which we demonstrate through biotin-avidin surface coupling.

pf

link (url) DOI [BibTex]


Thumb xl toc image
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles

Maier, A. M., Weig, C., Oswald, P., Frey, E., Fischer, P., Liedl, T.

Nano Letters, 16(2):906-910, January 2016 (article)

Abstract
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl teaser web
Human Pose Estimation from Video and IMUs

Marcard, T. V., Pons-Moll, G., Rosenhahn, B.

Transactions on Pattern Analysis and Machine Intelligence PAMI, 38(8):1533-1547, January 2016 (article)

ps

data pdf dataset_documentation [BibTex]

data pdf dataset_documentation [BibTex]


Thumb xl both testbed cropped
Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception

Ahmad, A., Bülthoff, H.

Robotics and Autonomous Systems, 83, pages: 275-286, 2016 (article)

Abstract
In this article we present an online estimator for multirobot cooperative localization and target tracking based on nonlinear least squares minimization. Our method not only makes the rigorous optimization-based approach applicable online but also allows the estimator to be stable and convergent. We do so by employing a moving horizon technique to nonlinear least squares minimization and a novel design of the arrival cost function that ensures stability and convergence of the estimator. Through an extensive set of real robot experiments, we demonstrate the robustness of our method as well as the optimality of the arrival cost function. The experiments include comparisons of our method with i) an extended Kalman filter-based online-estimator and ii) an offline-estimator based on full-trajectory nonlinear least squares.

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl siyong
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S. Y., Romero, J., Loper, M., Machann, J., Black, M.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

ps

publisher website preprint pdf link (url) DOI Project Page [BibTex]

publisher website preprint pdf link (url) DOI Project Page [BibTex]


no image
γ‐Conicein und Coniin aus Geflecktem Schierling

Puidokait, M., Graefe, J., Sehl, A., Steinke, K., Siehl, H., Zeller, K., Sicker, D., Berger, S.

Chemie in unserer Zeit, 50(6):382-391, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2016 02 22 at 11.46.41
The GRASP Taxonomy of Human Grasp Types

Feix, T., Romero, J., Schmiedmayer, H., Dollar, A., Kragic, D.

Human-Machine Systems, IEEE Transactions on, 46(1):66-77, 2016 (article)

ps

publisher website pdf DOI Project Page [BibTex]

publisher website pdf DOI Project Page [BibTex]


Thumb xl pami
Map-Based Probabilistic Visual Self-Localization

Brubaker, M. A., Geiger, A., Urtasun, R.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2016 (article)

Abstract
Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on maps which contain more than 2,150km of drivable roads.

avg ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

Müller, B. Y., Haag, M., Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 414, pages: 14-18, North-Holland, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-resolution analysis of currents at low-angle grain boundaries in YBCO thin films using magnetooptics and magnetic x-ray microscopy

Ruoß, S., Stahl, C., Bayer, J., Schütz, G., Albrecht, J., Laviano, F.

{IEEE Transactions on Applied Superconductivity}, 26(3), IEEE, New York, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Three-dimensional character of the magnetization dynamics in magnetic vortex structures: Hybridization of flexure gyromodes with spin waves

Noske, M., Stoll, H., Fähnle, M., Gangwar, A., Woltersdorf, G., Slavin, A., Weigand, M., Dieterle, G., Förster, J., Back, C. H., Schütz, G.

{Physical Review Letters}, 117(3), American Physical Society, Woodbury, N.Y., 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

Gräfe, J., Schütz, G., Goering, E. J.

{Journal of Magnetism and Magnetic Materials}, 419, pages: 517-520, North-Holland, Amsterdam, 2016 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

Callini, E., Aguey-Zinsou, K., Ahuja, R., Ares, J. R., Bals, S., Biliskov, N., Chakraborty, S., Charalambopoulou, G., Chaudhary, A., Cuevas, F., Dam, B., de Jongh, P., Dornheim, M., Filinchuk, Y., Grbovic-Novakovic, J., Hirscher, M., Jensen, T. R., Jensen, P. B., Novakovic, N., Lai, Q., Leardini, F., Gattia, D. M., Pasquini, L., Steriotis, T., Turner, S., Vegge, T., Züttel, A., Montone, A.

{International Journal of Hydrogen Energy}, 41(32):14404-14428, Elsevier, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic X-ray microscopy at low temperatures - Visualization of flux distributions in superconductors

Stahl, C., Ruoß, S., Weigand, M., Bechtel, M., Schütz, G., Albrecht, J.

{AIP Conference Proceedings}, 1696, AIP Publishing, Melville, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Enhanced non-adiabaticity in vortex cores due to the emergent Hall effect

Bisig, A., Akosa, C. A., Moon, J., Rhensius, J., Moutafis, C., von Bieren, A., Heidler, J., Kiliani, G., Kammerer, M., Curcic, M., Weigand, M., Tyliszczak, T., Van Waeyenberge, B., Stoll, H., Schütz, G., Lee, K., Manchon, A., Kläui, M.

{Physical Review Letters}, 117(27), American Physical Society, Woodbury, N.Y., 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantitative magneto-optical analysis of the role of finite temperatures on the critical state in YBCO thin films

Albrecht, J., Brück, S., Stahl, C., Ruoß, S.

{Superconductor Science and Technology}, 29(11), IOP Pub., Bristol, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Collective modes in three-dimensional magnonic vortex crystals

Hänze, M., Adolff, C. F., Schulte, B., Möller, J., Weigand, M., Meier, G.

{Scientific Reports}, 6, Nature Publishing Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin wave mediated unidirectional vortex core reversal by two orthogonal monopolar field pulses: The essential role of three-dimensional magnetization dynamics

Noske, M., Stoll, H., Fähnle, M., Gangwar, A., Woltersdorf, G., Slavin, A., Weigand, M., Dieterle, G., Förster, J., Back, C. H., Schütz, G.

{Journal of Applied Physics}, 119(17), AIP Publishing, New York, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic vortex cores as tunable spin-wave emitters

Wintz, S., Tiberkevich, V., Weigand, M., Raabe, J., Lindner, J., Erbe, A., Slavin, A., Fassbender, J.

{Nature Nanotechnology}, 11(11):948-953, Nature Publishing Group, London, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The usable capacity of porous materials for hydrogen storage

Schlichtenmayer, M., Hirscher, M.

{Applied Physics A}, 122(4), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetic behaviour of ZnO: the role of grain boundaries

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Goering, E., Schütz, G., Straumal, P. B., Baretzky, B.

{Beilstein Journal of Nanotechnology}, 7, pages: 1936-1947, Beilstein-Institut, Frankfurt am Main, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

Richter, K., Krone, A., Mawass, M., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

{Physical Review B}, 94(2), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets

Woo, S., Litzius, K., Krüger, B., Im, M., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R. M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M., Fischer, P., Kläui, M., Beach, G. S. D.

{Nature Materials}, 15(5):501-506, Nature Pub. Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Outlook and challenges for hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Hurst, K. E., Parilla, P. A., Gennett, T., Brown, C. M., Zacharia, R., Tylianakis, E., Klontzas, E., Froudakis, G. E., Steriotis, T. A., Trikalitis, P. N., Anton, D. L., Hardy, B., Tamburello, D., Corgnale, C., van Hassel, B. A., Cossement, D., Chahine, R., Hirscher, M.

{Applied Physics A}, 122(3), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantum sieving for separation of hydrogen isotopes using MOFs

Oh, H., Hirscher, M.

{European Journal of Inorganic Chemistry}, 2016(27):4278-4289, Wiley-VCH, Weinheim, Germany, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct patterning of vortex generators on a fiber tip using a focused ion beam

Vayalamkuzhi, P., Bhattacharya, S., Eigenthaler, U., Keskinbora, K., Salman, C. T., Hirscher, M., Spatz, J. P., Viswanathan, N. K.

{Optics Letters}, 41(10):2133-2136, Optical Society of America, Washington, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Two-body problem of core-region coupled magnetic vortex stacks

Hänze, M., Adolff, C. F., Velten, S., Weigand, M., Meier, G.

{Physical Review B}, 93(5), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Irreproducibility in hydrogen storage material research

Broom, D. P., Hirscher, M.

{Energy \& Environmental Science}, 9(11):3368-3380, Royal Society of Chemistry, Cambridge, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Effect of surface configurations on the room-temperature magnetism of pure ZnO

Chen, Y., Wang, Z., Leineweber, A., Baier, J., Tietze, T., Phillipp, F., Schütz, G., Goering, E.

{Journal of Materials Chemistry C}, 4(19):4166-4175, Royal Society of Chemistry, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
On the synthesis and microstructure analysis of high performance MnBi

Chen, Y., Sawatzki, S., Ener, S., Sepehri-Amin, H., Leineweber, A., Gregori, G., Qu, F., Muralidhar, S., Ohkubo, T., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E.

{AIP Advances}, 6(12), 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of individual defects on the magnetic screening of HTSC films

Ruoß, S., Stahl, C., Weigand, M., Zahn, P., Bayer, J., Schütz, G., Albrecht, J.

{New Journal of Physics}, 18(10), IOP Publishing, Bristol, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic switching of nanoscale antidot lattices

Wiedwald, U., Gräfe, J., Lebecki, K. M., Skripnik, M., Haering, F., Schütz, G., Ziemann, P., Goering, E., Nowak, U.

{Beilstein Journal of Nanotechnology}, 7, pages: 733-750, Beilstein-Institut, Frankfurt am Main, 2016 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Hydrogen-based energy storage (IEA-HIA Task 32)

Buckley, C. E., Chen, P., van Hassel, B. A., Hirscher, M.

{Applied Physics A}, 122(2), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local domain-wall velocity engineering via tailored potential landscapes in ferromagnetic rings

Richter, K., Krone, A., Mawass, M., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

{Physical Review Applied}, 5(2), American Physical Society, College Park, Md. [u.a.], 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy

Gräfe, J., Weigand, M., Träger, N., Schütz, G., Goering, E. J., Skripnik, M., Nowak, U., Haering, F., Ziemann, P., Wiedwald, U.

{Physical Review B}, 93(10), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Growth and characterizationof large weak topological insulator Bi2Tel single crystal by Bismuth self-flux method

Ryu, G., Son, K., Schütz, G.

{Journal of Crystal Growth}, 440, pages: 26-30, North-Holland, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

Moreau-Luchaire, C., Moutafis, C., Reyren, N., Sampaio, J., Vaz, C. A. F., Van Horne, N., Bouzehouane, K., Garcia, K., Deranlot, C., Warnicke, P., Wohlhüter, P., George, J.-M., Weigand, M., Raabe, J., Cros, V., Fert, A.

{Nature Nanotechnology}, 11(5):444-448, Nature Publishing Group, London, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Surface defect free growth of a spin dimer TlCuCl3 compound crystals and investigations on its optical and magnetic properties

Ryu, G., Son, K.

{Journal of Solid State Chemistry}, 237, pages: 358-363, Academic Press, Orlando, Fla., 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]