Header logo is


2018


Thumb xl dip final
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

ps

data code pdf preprint video DOI Project Page [BibTex]

2018


data code pdf preprint video DOI Project Page [BibTex]


Thumb xl cover
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl alice
First Impressions of Personality Traits From Body Shapes

Hu, Y., Parde, C. J., Hill, M. Q., Mahmood, N., O’Toole, A. J.

Psychological Science, 29(12):1969-–1983, October 2018 (article)

Abstract
People infer the personalities of others from their facial appearance. Whether they do so from body shapes is less studied. We explored personality inferences made from body shapes. Participants rated personality traits for male and female bodies generated with a three-dimensional body model. Multivariate spaces created from these ratings indicated that people evaluate bodies on valence and agency in ways that directly contrast positive and negative traits from the Big Five domains. Body-trait stereotypes based on the trait ratings revealed a myriad of diverse body shapes that typify individual traits. Personality-trait profiles were predicted reliably from a subset of the body-shape features used to specify the three-dimensional bodies. Body features related to extraversion and conscientiousness were predicted with the highest consensus, followed by openness traits. This study provides the first comprehensive look at the range, diversity, and reliability of personality inferences that people make from body shapes.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl fict 05 00018 g003
Visual Perception and Evaluation of Photo-Realistic Self-Avatars From 3D Body Scans in Males and Females

Thaler, A., Piryankova, I., Stefanucci, J. K., Pujades, S., de la Rosa, S., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

Frontiers in ICT, 5, pages: 1-14, September 2018 (article)

Abstract
The creation or streaming of photo-realistic self-avatars is important for virtual reality applications that aim for perception and action to replicate real world experience. The appearance and recognition of a digital self-avatar may be especially important for applications related to telepresence, embodied virtual reality, or immersive games. We investigated gender differences in the use of visual cues (shape, texture) of a self-avatar for estimating body weight and evaluating avatar appearance. A full-body scanner was used to capture each participant's body geometry and color information and a set of 3D virtual avatars with realistic weight variations was created based on a statistical body model. Additionally, a second set of avatars was created with an average underlying body shape matched to each participant’s height and weight. In four sets of psychophysical experiments, the influence of visual cues on the accuracy of body weight estimation and the sensitivity to weight changes was assessed by manipulating body shape (own, average) and texture (own photo-realistic, checkerboard). The avatars were presented on a large-screen display, and participants responded to whether the avatar's weight corresponded to their own weight. Participants also adjusted the avatar's weight to their desired weight and evaluated the avatar's appearance with regard to similarity to their own body, uncanniness, and their willingness to accept it as a digital representation of the self. The results of the psychophysical experiments revealed no gender difference in the accuracy of estimating body weight in avatars. However, males accepted a larger weight range of the avatars as corresponding to their own. In terms of the ideal body weight, females but not males desired a thinner body. With regard to the evaluation of avatar appearance, the questionnaire responses suggest that own photo-realistic texture was more important to males for higher similarity ratings, while own body shape seemed to be more important to females. These results argue for gender-specific considerations when creating self-avatars.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl mazen
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Thumb xl thesis cover2
Model-based Optical Flow: Layers, Learning, and Geometry

Wulff, J.

Tuebingen University, April 2018 (phdthesis)

Abstract
The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes.

ps

Official link DOI Project Page [BibTex]


Thumb xl animage2mask3
Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted

Mölbert, S. C., Thaler, A., Mohler, B. J., Streuber, S., Romero, J., Black, M. J., Zipfel, S., Karnath, H., Giel, K. E.

Psychological Medicine, 48(4):642-653, March 2018 (article)

Abstract
Background: Body image disturbance (BID) is a core symptom of anorexia nervosa (AN), but as yet distinctive features of BID are unknown. The present study aimed at disentangling perceptual and attitudinal components of BID in AN. Methods: We investigated n=24 women with AN and n=24 controls. Based on a 3D body scan, we created realistic virtual 3D bodies (avatars) for each participant that were varied through a range of ±20% of the participants' weights. Avatars were presented in a virtual reality mirror scenario. Using different psychophysical tasks, participants identified and adjusted their actual and their desired body weight. To test for general perceptual biases in estimating body weight, a second experiment investigated perception of weight and shape matched avatars with another identity. Results: Women with AN and controls underestimated their weight, with a trend that women with AN underestimated more. The average desired body of controls had normal weight while the average desired weight of women with AN corresponded to extreme AN (DSM-5). Correlation analyses revealed that desired body weight, but not accuracy of weight estimation, was associated with eating disorder symptoms. In the second experiment, both groups estimated accurately while the most attractive body was similar to Experiment 1. Conclusions: Our results contradict the widespread assumption that patients with AN overestimate their body weight due to visual distortions. Rather, they illustrate that BID might be driven by distorted attitudes with regard to the desired body. Clinical interventions should aim at helping patients with AN to change their desired weight.

ps

doi pdf DOI Project Page [BibTex]


Thumb xl plos1
Body size estimation of self and others in females varying in BMI

Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

PLoS ONE, 13(2), Febuary 2018 (article)

Abstract
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

ps

pdf DOI Project Page [BibTex]


Thumb xl coregpatentfig
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

ps

text [BibTex]


no image
Transmission x-ray microscopy at low temperatures: Irregular supercurrent flow at small length scales

Simmendinger, J., Ruoss, S., Stahl, C., Weigand, M., Gräfe, J., Schütz, G., Albrecht, J.

{Physical Review B}, 97(13), American Physical Society, Woodbury, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Incorporation of Terbium into a Microalga Leads to Magnetotactic Swimmers

Santomauro, G., Singh, A., Park, B. W., Mohammadrahimi, M., Erkoc, P., Goering, E., Schütz, G., Sitti, M., Bill, J.

Advanced Biosystems, 2(12):1800039, 2018 (article)

mms pi

[BibTex]

[BibTex]


Thumb xl yanzhang clustering
Temporal Human Action Segmentation via Dynamic Clustering

Zhang, Y., Sun, H., Tang, S., Neumann, H.

arXiv preprint arXiv:1803.05790, 2018 (article)

Abstract
We present an effective dynamic clustering algorithm for the task of temporal human action segmentation, which has comprehensive applications such as robotics, motion analysis, and patient monitoring. Our proposed algorithm is unsupervised, fast, generic to process various types of features, and applica- ble in both the online and offline settings. We perform extensive experiments of processing data streams, and show that our algorithm achieves the state-of- the-art results for both online and offline settings.

ps

link (url) [BibTex]

link (url) [BibTex]


Thumb xl motion segmentation tracking clustering teaser
Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering

Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018 (article)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


no image
3D nanoprinted plastic kinoform x-ray optics

Sanli, U. T., Ceylan, H., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Advanced Materials}, 30(36), Wiley-VCH, Weinheim, 2018 (article)

mms pi

DOI [BibTex]

DOI [BibTex]


no image
Thick permalloy films for the imaging of spin texture dynamics in perpendicularly magnetized systems

Finizio, S., Wintz, S., Bracher, D., Kirk, E., Semisalova, A. S., Förster, J., Zeissler, K., We\ssels, T., Weigand, M., Lenz, K., Kleibert, A., Raabe, J.

{Physical Review B}, 98(10), American Physical Society, Woodbury, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Dynamic Janus metasurfaces in the visible spectral region

Yu, P., Li, J., Zhang, S., Jin, Z., Schütz, G., Qiu, C., Hirscher, M., Liu, N.

{Nano Letters}, 18(7):4584-4589, American Chemical Society, Washington, DC, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Review of ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter

Fähnle, M., Haag, M., Illg, C., Müller, B. Y., Weng, W., Tsatsoulis, T., Huang, H., Briones Paz, J. Z., Teeny, N., Zhang, L., Kuhn, T.

{American Journal of Modern Physics}, 7(2):68-74, Science Publishing Group, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of Zhang-Li torque expansion of magnetic droplet solitons

Chung, S., Tuan Le, Q., Ahlberg, M., Awad, A. A., Weigand, M., Bykova, I., Khymyn, R., Dvornik, M., Mazraati, H., Houshang, A., Jiang, S., Nguyen, T. N. A., Goering, E., Schütz, G., Gräfe, J., \AAkerman, J.

{Physical Review Letters}, 120(21), American Physical Society, Woodbury, N.Y., 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
XMCD investigations on new hard magnetic systems

Chen, Y.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures

Lemesh, I., Litzius, K., Böttcher, M., Bassirian, P., Kerber, N., Heinze, D., Zázvorka, J., Büttner, F., Caretta, L., Mann, M., Weigand, M., Finizio, S., Raabe, J., Im, M., Stoll, H., Schütz, G., Dupé, B., Kläui, M., Beach, G. S. D.

{Advanced Materials}, 30(49), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Assessment methodology of promising porous materials for near ambient temperature hydrogen storage applications

Minuto, F. D., Balderas-Xicohténcatl, R., Policicchio, A., Hirscher, M., Agostino, R. G.

{International Journal of Hydrogen Energy}, 43(31):14550-14556, Elsevier, Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Emission and propagation of multi-dimensional spin waves in anisotropic spin textures

Sluka, V., Schneider, T., Gallardo, R. A., Kakay, A., Weigand, M., Warnatz, T., Mattheis, R., Roldan-Molina, A., Landeros, P., Tiberkevich, V., Slavin, A., Schütz, G., Erbe, A., Deac, A., Lindner, J., Raabe, J., Fassbender, J., Wintz, S.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
3d nanofabrication of high-resolution multilayer Fresnel zone plates

Sanli, U. T., Jiao, C., Baluktsian, M., Grévent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Schütz, G., Keskinbora, K.

{Advanced Science}, 5(9), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photocatalytic CO2 reduction by Cr-substituted Ba2(In2-xCrx)O5\mbox⋅(H2O)δ(0.04 ≤x ≤0.60)

Yoon, S., Gaul, M., Sharma, S., Son, K., Hagemann, H., Ziegenbalg, D., Schwingenschlogl, U., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 78, pages: 22-29, Elsevier Masson SAS, Paris, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Correction of axial position uncertainty and systematic detector errors in ptychographic diffraction imaging

Loetgering, L., Rose, M., Keskinbora, K., Baluktsian, M., Dogan, G., Sanli, U., Bykova, I., Weigand, M., Schütz, G., Wilhein, T.

{Optical Engineering}, 57(8), The Society, Redondo Beach, Calif., 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Thermodynamics, kinetics and selectivity of H2 and D2 on zeolite 5A below 77K

Xiong, R., Balderas-Xicohténcatl, R., Zhang, L., Li, P., Yao, Y., Sang, G., Chen, C., Tang, T., Luo, D., Hirscher, M.

{Microporous and Mesoporous Materials}, 264, pages: 22-27, Elsevier, Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of surface oxides on hydrogen sorption kinetics in titanium thin films

Hadjixenophontos, E., Michalek, L., Roussel, M., Hirscher, M., Schmitz, G.

{Applied Surface Science}, 441, pages: 324-330, Elsevier B.V., Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Volumetric hydrogen storage capacity in metal-organic frameworks

Balderas-Xicohténcatl, R., Schlichtenmayer, M., Hirscher, M.

{Energy Technology}, 6(3):578-582, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetism in nitrogen and fluorine substituted BaTiO3

Yoon, S., Son, K., Ebbinghaus, S. G., Widenmeyer, M., Weidenkaff, A.

{Journal of Alloys and Compounds}, 749, pages: 628-633, Elsevier B.V., Lausanne, Switzerland, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
New concepts for 3d optics in x-ray microscopy

Sanli, U., Ceylan, H., Jiao, C., Baluktsian, M., Grevent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Microscopy and Microanalysis}, 24(Suppl 2):288-289, Cambridge University Press, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Thermal skyrmion diffusion applied in probabilistic computing

Zázvorka, J., Jakobs, F., Heinze, D., Keil, N., Kromin, S., Jaiswal, S., Litzius, K., Jakob, G., Virnau, P., Pinna, D., Everschor-Sitte, K., Donges, A., Nowak, U., Kläui, M.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
High volumetric hydrogen storage capacity using interpenetrated metal-organic frameworks

Balderas-Xicohténcatl, R., Schmieder, P., Denysenko, D., Volkmer, D., Hirscher, M.

{Energy Technology}, 6(3):510-512, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin-wave interference in magnetic vortex stacks

Behncke, C., Adolff, C. F., Lenzing, N., Hänze, M., Schulte, B., Weigand, M., Schütz, G., Meier, G.

{Communications Physics}, 1, Nature Publishing Group, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

Keskinbora, K., Sanli, U. T., Baluktsian, M., Grévent, C., Weigand, M., Schütz, G.

{Beilstein Journal of Nanotechnology}, 9, pages: 2049-2056, Beilstein-Institut, Frankfurt am Main, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy

Woo, S., Song, K. M., Zhang, X., Ezawa, M., Zhou, Y., Liu, X., Weigand, M., Finizio, S., Raabe, J., Park, M.-C., Lee, K.-Y., Choi, J. W., Min, B.-C., Koo, H. C., Chang, J.

{Nature Electronics}, 1(5):288-296, Springer Nature, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic skyrmion as a nonlinear resistive element: A potential building block for reservoir computing

Prychynenko, D., Sitte, M., Litzius, K., Krüger, B., Bourianoff, G., Kläui, M., Sinova, J., Everschor-Sitte, K.

{Physical Review Applied}, 9(1), American Physical Society, College Park, Md. [u.a.], 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable geometrical frustration in magnoic vortex crystals

Behncke, C., Adolff, C. F., Wintz, S., Hänze, M., Schulte, B., Weigand, M., Finizio, S., Raabe, J., Meier, G.

{Scientific Reports}, 8, Nature Publishing Group, London, UK, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-Resolution X-ray Ptychography for Magnetic Imaging

Bykova, I.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


Thumb xl sigalijcv11
Loose-limbed People: Estimating 3D Human Pose and Motion Using Non-parametric Belief Propagation

Sigal, L., Isard, M., Haussecker, H., Black, M. J.

International Journal of Computer Vision, 98(1):15-48, Springer Netherlands, May 2011 (article)

Abstract
We formulate the problem of 3D human pose estimation and tracking as one of inference in a graphical model. Unlike traditional kinematic tree representations, our model of the body is a collection of loosely-connected body-parts. In particular, we model the body using an undirected graphical model in which nodes correspond to parts and edges to kinematic, penetration, and temporal constraints imposed by the joints and the world. These constraints are encoded using pair-wise statistical distributions, that are learned from motion-capture training data. Human pose and motion estimation is formulated as inference in this graphical model and is solved using Particle Message Passing (PaMPas). PaMPas is a form of non-parametric belief propagation that uses a variation of particle filtering that can be applied over a general graphical model with loops. The loose-limbed model and decentralized graph structure allow us to incorporate information from "bottom-up" visual cues, such as limb and head detectors, into the inference process. These detectors enable automatic initialization and aid recovery from transient tracking failures. We illustrate the method by automatically tracking people in multi-view imagery using a set of calibrated cameras and present quantitative evaluation using the HumanEva dataset.

ps

pdf publisher's site link (url) Project Page Project Page [BibTex]

2011


pdf publisher's site link (url) Project Page Project Page [BibTex]


Thumb xl pointclickimagewide
Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia

Kim, S., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Friehs, G. M., Black, M. J.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2):193-203, April 2011 (article)

Abstract
We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2D computer cursor in any desired direction on a computer screen, hold it still and click on the area of interest. This direct brain-computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants were able to control the cursor motion accurately and click on specified targets with a small error rate (< 3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (~40) can be used for natural point-and-click 2D cursor control of a personal computer.

ps

pdf publishers's site pub med link (url) Project Page [BibTex]

pdf publishers's site pub med link (url) Project Page [BibTex]


Thumb xl middleburyimagesmall
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., Szeliski, R.

International Journal of Computer Vision, 92(1):1-31, March 2011 (article)

Abstract
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.

ps

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]


no image
The Oxidation of Fe(111)

Davies, R., Edwards, D., Gräfe, J., Gilbert, L., Davies, P., Hutchings, G., Bowker, M.

Surface Science, 605(17-18):1754-1762, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-resolution x-ray absorption spectroscopy of BaTiO_3: Experiment and first-principles calculations

Chassé, A., Borek, S., Schindler, K., Trautmann, M., Huth, M., Steudel, F., Makhova, L., Gräfe, J., Denecke, R.

Physical Review B, 84, pages: 195135, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl 1000dayimagesmall
Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

(J. Neural Engineering Highlights of 2011 Collection. JNE top 10 cited papers of 2010-2011.)

Simeral, J. D., Kim, S., Black, M. J., Donoghue, J. P., Hochberg, L. R.

J. of Neural Engineering, 8(2):025027, 2011 (article)

Abstract
The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

ps

pdf pdf from publisher link (url) Project Page [BibTex]


no image
Ferromagnetism of ZnO influenced by physical and chemical treatment

Chen, Y.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Charakterisierung von ultradünnen, funktionellen CoFeB Filmen

Streckenbach, F.

Hochschule Esslingen / Hochschule Aalen, Esslingen / Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen adsorption on metal-organic frameworks

Streppel, B.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Electron theory of fast and ultrafast dissipative magnetization dynamics

Fähnle, M., Illg, C.

{Journal of Physics: Condensed Matter}, 23, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]