Header logo is


2005


Thumb xl ivc05
Representing cyclic human motion using functional analysis

Ormoneit, D., Black, M. J., Hastie, T., Kjellström, H.

Image and Vision Computing, 23(14):1264-1276, December 2005 (article)

Abstract
We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian tracking of 3D human motion.

ps

pdf pdf from publisher DOI [BibTex]

2005


pdf pdf from publisher DOI [BibTex]


Thumb xl pets 2005 copy
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl embs05
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl arma
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl cvpr2005
Fields of Experts: A framework for learning image priors

Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 2, pages: 860-867, June 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl toc image
Nonlinear optical spectroscopy of chiral molecules

Fischer, P., Hache, F.

CHIRALITY, 17(8):421-437, 2005 (article)

Abstract
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality: They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest. (C) 2005 Wiley-Liss, Inc.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Negative refraction at optical frequencies in nonmagnetic two-component molecular media

Chen, Y., Fischer, P., Wise, F.

PHYSICAL REVIEW LETTERS, 95(6), 2005 (article)

Abstract
There is significant motivation to develop media with negative refractive indices at optical frequencies, but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies. We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit a negative refractive index. A negative index is possible even when the real parts of both the permittivity and permeability are positive. This surprising result provides a route to isotropic negative-index media at optical frequencies.

pf

DOI [BibTex]

DOI [BibTex]


no image
Natural Actor-Critic

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 16th European Conference on Machine Learning, 3720, pages: 280-291, (Editors: Gama, J.;Camacho, R.;Brazdil, P.;Jorge, A.;Torgo, L.), Springer, ECML, 2005, clmc (inproceedings)

Abstract
This paper investigates a novel model-free reinforcement learning architecture, the Natural Actor-Critic. The actor updates are based on stochastic policy gradients employing AmariÕs natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by linear regres- sion. We show that actor improvements with natural policy gradients are particularly appealing as these are independent of coordinate frame of the chosen policy representation, and can be estimated more efficiently than regular policy gradients. The critic makes use of a special basis function parameterization motivated by the policy-gradient compatible function approximation. We show that several well-known reinforcement learning methods such as the original Actor-Critic and BradtkeÕs Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Em- pirical evaluations illustrate the effectiveness of our techniques in com- parison to previous methods, and also demonstrate their applicability for learning control on an anthropomorphic robot arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Comparative experiments on task space control with redundancy resolution

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3901-3908, Edmonton, Alberta, Canada, Aug. 2-6, IROS, 2005, clmc (inproceedings)

Abstract
Understanding the principles of motor coordination with redundant degrees of freedom still remains a challenging problem, particularly for new research in highly redundant robots like humanoids. Even after more than a decade of research, task space control with redundacy resolution still remains an incompletely understood theoretical topic, and also lacks a larger body of thorough experimental investigation on complex robotic systems. This paper presents our first steps towards the development of a working redundancy resolution algorithm which is robust against modeling errors and unforeseen disturbances arising from contact forces. To gain a better understanding of the pros and cons of different approaches to redundancy resolution, we focus on a comparative empirical evaluation. First, we review several redundancy resolution schemes at the velocity, acceleration and torque levels presented in the literature in a common notational framework and also introduce some new variants of these previous approaches. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm. Surprisingly, one of our simplest algorithms empirically demonstrates the best performance, despite, from a theoretical point, the algorithm does not share the same beauty as some of the other methods. Finally, we discuss practical properties of these control algorithms, particularly in light of inevitable modeling errors of the robot dynamics.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Predicting EMG Data from M1 Neurons with Variational Bayesian Least Squares

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D., Kakei, S., Sergio, L., Kalaska, J., Kawato, M., Strick, P., Schaal, S.

In Advances in Neural Information Processing Systems 18 (NIPS 2005), (Editors: Weiss, Y.;Schölkopf, B.;Platt, J.), Cambridge, MA: MIT Press, Vancouver, BC, Dec. 6-11, 2005, clmc (inproceedings)

Abstract
An increasing number of projects in neuroscience requires the statistical analysis of high dimensional data sets, as, for instance, in predicting behavior from neural firing, or in operating artificial devices from brain recordings in brain-machine interfaces. Linear analysis techniques remain prevalent in such cases, but classi-cal linear regression approaches are often numercially too fragile in high dimen-sions. In this paper, we address the question of whether EMG data collected from arm movements of monkeys can be faithfully reconstructed with linear ap-proaches from neural activity in primary motor cortex (M1). To achieve robust data analysis, we develop a full Bayesian approach to linear regression that automatically detects and excludes irrelevant features in the data, and regular-izes against overfitting. In comparison with ordinary least squares, stepwise re-gression, partial least squares, and a brute force combinatorial search for the most predictive input features in the data, we demonstrate that the new Bayesian method offers a superior mixture of characteristics in terms of regularization against overfitting, computational efficiency, and ease of use, demonstrating its potential as a drop-in replacement for other linear regression techniques. As neuroscientific results, our analyses demonstrate that EMG data can be well pre-dicted from M1 neurons, further opening the path for possible real-time inter-faces between brains and machines.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl iccv05roth
On the spatial statistics of optical flow

(Marr Prize, Honorable Mention)

Roth, S., Black, M. J.

In International Conf. on Computer Vision, pages: 42-49, 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Rapbid synchronization and accurate phase-locking of rhythmic motor primitives

Pongas, D., Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 2911-2916, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Rhythmic movement is ubiquitous in human and animal behavior, e.g., as in locomotion, dancing, swimming, chewing, scratching, music playing, etc. A particular feature of rhythmic movement in biology is the rapid synchronization and phase locking with other rhythmic events in the environment, for instance music or visual stimuli as in ball juggling. In traditional oscillator theories to rhythmic movement generation, synchronization with another signal is relatively slow, and it is not easy to achieve accurate phase locking with a particular feature of the driving stimulus. Using a recently developed framework of dynamic motor primitives, we demonstrate a novel algorithm for very rapid synchronizaton of a rhythmic movement pattern, which can phase lock any feature of the movement to any particulur event in the driving stimulus. As an example application, we demonstrate how an anthropomorphic robot can use imitation learning to acquire a complex rumming pattern and keep it synchronized with an external rhythm generator that changes its frequency over time.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


Thumb xl nips05
Modeling neural population spiking activity with Gibbs distributions

Wood, F., Roth, S., Black, M. J.

In Advances in Neural Information Processing Systems 18, pages: 1537-1544, 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Energy-based models of motor cortical population activity

Wood, F., Black, M.

Program No. 689.20. 2005 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2005 (conference)

ps

abstract [BibTex]

abstract [BibTex]


no image
A new methodology for robot control design

Peters, J., Mistry, M., Udwadia, F. E., Schaal, S.

In The 5th ASME International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC 2005), Long Beach, CA, Sept. 24-28, 2005, clmc (inproceedings)

Abstract
Gauss principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems (Udwadia,2003). Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Arm movement experiments with joint space force fields using an exoskeleton robot

Mistry, M., Mohajerian, P., Schaal, S.

In IEEE Ninth International Conference on Rehabilitation Robotics, pages: 408-413, Chicago, Illinois, June 28-July 1, 2005, clmc (inproceedings)

Abstract
A new experimental platform permits us to study a novel variety of issues of human motor control, particularly full 3-D movements involving the major seven degrees-of-freedom (DOF) of the human arm. We incorporate a seven DOF robot exoskeleton, and can minimize weight and inertia through gravity, Coriolis, and inertia compensation, such that subjects' arm movements are largely unaffected by the manipulandum. Torque perturbations can be individually applied to any or all seven joints of the human arm, thus creating novel dynamic environments, or force fields, for subjects to respond and adapt to. Our first study investigates a joint space force field where the shoulder velocity drives a disturbing force in the elbow joint. Results demonstrate that subjects learn to compensate for the force field within about 100 trials, and from the strong presence of aftereffects when removing the field in some randomized catch trials, that an inverse dynamics, or internal model, of the force field is formed by the nervous system. Interestingly, while post-learning hand trajectories return to baseline, joint space trajectories remained changed in response to the field, indicating that besides learning a model of the force field, the nervous system also chose to exploit the space to minimize the effects of the force field on the realization of the endpoint trajectory plan. Further applications for our apparatus include studies in motor system redundancy resolution and inverse kinematics, as well as rehabilitation.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A unifying framework for the control of robotics systems

Peters, J., Mistry, M., Udwadia, F. E., Cory, R., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 1824-1831, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Recently, [1] suggested to derive tracking controllers for mechanical systems using a generalization of GaussÕ principle of least constraint. This method al-lows us to reformulate control problems as a special class of optimal control. We take this line of reasoning one step further and demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sar-cos Master Arm robot for some of the the derived controllers.We believe that the suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equa-tions, both with or without external constraints, with over-actuation or under-actuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]

2001


Thumb xl bildschirmfoto 2012 12 11 um 10.41.35
Dynamic coupled component analysis

De la Torre, F., Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’01, 2, pages: 643-650, IEEE, Kauai, Hawaii, December 2001 (inproceedings)

ps

pdf [BibTex]

2001


pdf [BibTex]


Thumb xl toc image
Isotropic second-order nonlinear optical susceptibilities

Fischer, P., Buckingham, A., Albrecht, A.

PHYSICAL REVIEW A, 64(5), 2001 (article)

Abstract
The second-order nonlinear optical susceptibility, in the electric dipole approximation, is only nonvanishing for materials that are noncentrosymmetric. Should the medium be isotropic, then only a chiral system. such as an optically active liquid, satisfies this symmetry requirement. We derive the quantum-mechanical form of the isotropic component of the sum- and difference-frequency susceptibility and discuss its unusual spectral properties. We show that any coherent second-order nonlinear optical process in a system of randomly oriented molecules requires the medium to be chiral. and the incident frequencies to be different and nonzero. Furthermore, a minimum of two nondegenerate excited molecular states are needed for the isotropic part of the susceptibility to be nonvanishing. The rotationally invariant susceptibility is zero in the static field limit and shows exceptionally sensitive resonance and dephasing effects that are particular to chiral centers.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Reply to “Comment on ‘Phenomenological damping in optical response tensors’”

Buckingham, A., Fischer, P.

PHYSICAL REVIEW A, 63(4), 2001 (article)

Abstract
We show that damping factors must not be incorporated in the perturbation of the ground state by a static electric field. If they are included, as in the theory of Stedman et al. {[}preceding Comment. Phys. Rev. A 63, 047801 (2001)], then there would be an electric dipole in the y direction induced in a hydrogen atom in the M-s = + 1/2 state by a static electric field in the x direction. Such a dipole is excluded by symmetry.

pf

DOI [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 11.56.46
Robust principal component analysis for computer vision

De la Torre, F., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 362-369, Vancouver, BC, USA, 2001 (inproceedings)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.58.16
Learning image statistics for Bayesian tracking

Sidenbladh, H., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 709-716, Vancouver, BC, USA, 2001 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Humanoid oculomotor control based on concepts of computational neuroscience

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

In Humanoids2001, Second IEEE-RAS International Conference on Humanoid Robots, 2001, clmc (inproceedings)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., the stabilization of gaze in face of unknown perturbations of the body, selective attention, the complexity of stereo vision and dealing with large information processing delays. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors was derived from inspirations from computational neuroscience, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors that appears natural and human-like.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Trajectory formation for imitation with nonlinear dynamical systems

Ijspeert, A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), pages: 752-757, Weilea, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
This article explores a new approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed movement is approximated by finding a best fit of the mixture model to its data by a recursive least squares regression technique. In contrast to non-autonomous movement representations like splines, the resultant movement plan remains an autonomous set of nonlinear differential equations that forms a control policy which is robust to strong external perturbations and that can be modified by additional perceptual variables. This movement policy remains the same for a given target, regardless of the initial conditions, and can easily be re-used for new targets. We evaluate the trajectory formation system (TFS) in the context of a humanoid robot simulation that is part of the Virtual Trainer (VT) project, which aims at supervising rehabilitation exercises in stroke-patients. A typical rehabilitation exercise was collected with a Sarcos Sensuit, a device to record joint angular movement from human subjects, and approximated and reproduced with our imitation techniques. Our results demonstrate that multi-joint human movements can be encoded successfully, and that this system allows robust modifications of the movement policy through external variables.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Real-time statistical learning for robotics and human augmentation

Schaal, S., Vijayakumar, S., D’Souza, A., Ijspeert, A., Nakanishi, J.

In International Symposium on Robotics Research, (Editors: Jarvis, R. A.;Zelinsky, A.), Lorne, Victoria, Austrialia Nov.9-12, 2001, clmc (inproceedings)

Abstract
Real-time modeling of complex nonlinear dynamic processes has become increasingly important in various areas of robotics and human augmentation. To address such problems, we have been developing special statistical learning methods that meet the demands of on-line learning, in particular the need for low computational complexity, rapid learning, and scalability to high-dimensional spaces. In this paper, we introduce a novel algorithm that possesses all the necessary properties by combining methods from probabilistic and nonparametric learning. We demonstrate the applicability of our methods for three different applications in humanoid robotics, i.e., the on-line learning of a full-body inverse dynamics model, an inverse kinematics model, and imitation learning. The latter application will also introduce a novel method to shape attractor landscapes of dynamical system by means of statis-tical learning.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Robust learning of arm trajectories through human demonstration

Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
We present a model, composed of hierarchy of artificial neural networks, for robot learning by demonstration. The model is implemented in a dynamic simulation of a 41 degrees of freedom humanoid for reproducing 3D human motion of the arm. Results show that the model requires few information about the desired trajectory and learns on-line the relevant features of movement. It can generalize across a small set of data to produce a qualitatively good reproduction of the demonstrated trajectory. Finally, it is shown that reproduction of the trajectory after learning is robust against perturbations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Synchronized robot drumming by neural oscillator

Kotosaka, S., Schaal, S.

Journal of the Robotics Society of Japan, 19(1):116-123, 2001, clmc (article)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

[BibTex]

[BibTex]


no image
Origins and violations of the 2/3 power law in rhythmic 3D movements

Schaal, S., Sternad, D.

Experimental Brain Research, 136, pages: 60-72, 2001, clmc (article)

Abstract
The 2/3 power law, the nonlinear relationship between tangential velocity and radius of curvature of the endeffector trajectory, has been suggested as a fundamental constraint of the central nervous system in the formation of rhythmic endpoint trajectories. However, studies on the 2/3 power law have largely been confined to planar drawing patterns of relatively small size. With the hypothesis that this strategy overlooks nonlinear effects that are constitutive in movement generation, the present experiments tested the validity of the power law in elliptical patterns which were not confined to a planar surface and which were performed by the unconstrained 7-DOF arm with significant variations in pattern size and workspace orientation. Data were recorded from five human subjects where the seven joint angles and the endpoint trajectories were analyzed. Additionally, an anthropomorphic 7-DOF robot arm served as a "control subject" whose endpoint trajectories were generated on the basis of the human joint angle data, modeled as simple harmonic oscillations. Analyses of the endpoint trajectories demonstrate that the power law is systematically violated with increasing pattern size, in both exponent and the goodness of fit. The origins of these violations can be explained analytically based on smooth rhythmic trajectory formation and the kinematic structure of the human arm. We conclude that in unconstrained rhythmic movements, the power law seems to be a by-product of a movement system that favors smooth trajectories, and that it is unlikely to serve as a primary movement generating principle. Our data rather suggests that subjects employed smooth oscillatory pattern generators in joint space to realize the required movement patterns.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Graph-matching vs. entropy-based methods for object detection
Neural Networks, 14(3):345-354, 2001, clmc (article)

Abstract
Labeled Graph Matching (LGM) has been shown successful in numerous ob-ject vision tasks. This method is the basis for arguably the best face recognition system in the world. We present an algorithm for visual pattern recognition that is an extension of LGM ("LGM+"). We compare the performance of LGM and LGM+ algorithms with a state of the art statistical method based on Mutual Information Maximization (MIM). We present an adaptation of the MIM method for multi-dimensional Gabor wavelet features. The three pattern recognition methods were evaluated on an object detection task, using a set of stimuli on which none of the methods had been tested previously. The results indicate that while the performance of the MIM method operating upon Gabor wavelets is superior to the same method operating on pixels and to LGM, it is surpassed by LGM+. LGM+ offers a significant improvement in performance over LGM without losing LGMâ??s virtues of simplicity, biological plausibility, and a computational cost that is 2-3 orders of magnitude lower than that of the MIM algorithm. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic gaze stabilization based on feedback-error learning with nonparametric regression networks

Shibata, T., Schaal, S.

Neural Networks, 14(2):201-216, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e. the stabilization of gaze in face of unknown perturbations of the body, selective attention, stereo vision, and dealing with large information processing delays. Given the nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate control of these behaviors through learning approaches. This paper develops a learning control system for the phylogenetically oldest behaviors of oculomotor control, the stabilization reflexes of gaze. In a step-wise procedure, we demonstrate how control theoretic reasonable choices of control components result in an oculomotor control system that resembles the known functional anatomy of the primate oculomotor system. The core of the learning system is derived from the biologically inspired principle of feedback-error learning combined with a state-of-the-art non-parametric statistical learning network. With this circuitry, we demonstrate that our humanoid robot is able to acquire high performance visual stabilization reflexes after about 40 s of learning despite significant nonlinearities and processing delays in the system.

am

link (url) [BibTex]


no image
Encoding/decoding of arm kinematics from simultaneously recorded MI neurons

Gao, Y., Bienenstock, E., Black, M., Shoham, S., Serruya, M., Donoghue, J.

Society for Neuroscience Abst. Vol. 27, Program No. 572.14, 2001 (conference)

ps

abstract [BibTex]

abstract [BibTex]


no image
Fast learning of biomimetic oculomotor control with nonparametric regression networks (in Japanese)

Shibata, T., Schaal, S.

Journal of the Robotics Society of Japan, 19(4):468-479, 2001, clmc (article)

am

[BibTex]

[BibTex]


no image
Bouncing a ball: Tuning into dynamic stability

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Journal of Experimental Psychology: Human Perception and Performance, 27(5):1163-1184, 2001, clmc (article)

Abstract
Rhythmically bouncing a ball with a racket was investigated and modeled with a nonlinear map. Model analyses provided a variable defining a dynamically stable solution that obviates computationally expensive corrections. Three experiments evaluated whether dynamic stability is optimized and what perceptual support is necessary for stable behavior. Two hypotheses were tested: (a) Performance is stable if racket acceleration is negative at impact, and (b) variability is lowest at an impact acceleration between -4 and -1 m/s2. In Experiment 1 participants performed the task, eyes open or closed, bouncing a ball confined to a 1-dimensional trajectory. Experiment 2 eliminated constraints on racket and ball trajectory. Experiment 3 excluded visual or haptic information. Movements were performed with negative racket accelerations in the range of highest stability. Performance with eyes closed was more variable, leaving acceleration unaffected. With haptic information, performance was more stable than with visual information alone.

am

[BibTex]

[BibTex]


no image
Overt visual attention for a humanoid robot

Vijayakumar, S., Conradt, J., Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
The goal of our research is to investigate the interplay between oculomotor control, visual processing, and limb control in humans and primates by exploring the computational issues of these processes with a biologically inspired artificial oculomotor system on an anthropomorphic robot. In this paper, we investigate the computational mechanisms for visual attention in such a system. Stimuli in the environment excite a dynamical neural network that implements a saliency map, i.e., a winner-take-all competition between stimuli while simultenously smoothing out noise and suppressing irrelevant inputs. In real-time, this system computes new targets for the shift of gaze, executed by the head-eye system of the robot. The redundant degrees-of- freedom of the head-eye system are resolved through a learned inverse kinematics with optimization criterion. We also address important issues how to ensure that the coordinate system of the saliency map remains correct after movement of the robot. The presented attention system is built on principled modules and generally applicable for any sensory modality.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning inverse kinematics

D’Souza, A., Vijayakumar, S., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates learning of inverse kinematics for resolved motion rate control (RMRC) employing an optimization criterion to resolve kinematic redundancies. Our learning approach is based on the key observations that learning an inverse of a non uniquely invertible function can be accomplished by augmenting the input representation to the inverse model and by using a spatially localized learning approach. We apply this strategy to inverse kinematics learning and demonstrate how a recently developed statistical learning algorithm, Locally Weighted Projection Regression, allows efficient learning of inverse kinematic mappings in an incremental fashion even when input spaces become rather high dimensional. The resulting performance of the inverse kinematics is comparable to Liegeois ([1]) analytical pseudo inverse with optimization. Our results are illustrated with a 30 degree-of-freedom humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic smooth pursuit based on fast learning of the target dynamics

Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
Following a moving target with a narrow-view foveal vision system is one of the essential oculomotor behaviors of humans and humanoids. This oculomotor behavior, called ``Smooth Pursuit'', requires accurate tracking control which cannot be achieved by a simple visual negative feedback controller due to the significant delays in visual information processing. In this paper, we present a biologically inspired and control theoretically sound smooth pursuit controller consisting of two cascaded subsystems. One is an inverse model controller for the oculomotor system, and the other is a learning controller for the dynamics of the visual target. The latter controller learns how to predict the target's motion in head coordinates such that tracking performance can be improved. We investigate our smooth pursuit system in simulations and experiments on a humanoid robot. By using a fast on-line statistical learning network, our humanoid oculomotor system is able to acquire high performance smooth pursuit after about 5 seconds of learning despite significant processing delays in the syste

am

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic oculomotor control

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

Adaptive Behavior, 9(3/4):189-207, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., capturing targets accurately on a very narrow fovea, dealing with large delays in the control system, the stabilization of gaze in face of unknown perturbations of the body, selective attention, and the complexity of stereo vision. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors and their integration - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors and the mechanism for their integration was derived with inspiration from computational theories as well as behavioral and physiological data in neuroscience. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Conversely, insights gained from our models have been able to directly influence views and provide new directions for computational neuroscience research.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 12.05.35
Learning and tracking cyclic human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

In Advances in Neural Information Processing Systems 13, NIPS, pages: 894-900, (Editors: Leen, Todd K. and Dietterich, Thomas G. and Tresp, Volker), The MIT Press, 2001 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]

1993


Thumb xl bildschirmfoto 2013 01 14 um 11.48.36
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

ps

pdf abstract tech report [BibTex]

1993


pdf abstract tech report [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 11.52.45
A framework for the robust estimation of optical flow

(Helmholtz Prize)

Black, M. J., Anandan, P.

In Fourth International Conf. on Computer Vision, ICCV-93, pages: 231-236, Berlin, Germany, May 1993 (inproceedings)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This work describes a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This work focuses on the recovery of multiple parametric motion models within a region as well as the recovery of piecewise-smooth flow fields and provides examples with natural and synthetic image sequences.

ps

pdf video abstract code [BibTex]

pdf video abstract code [BibTex]


no image
Roles for memory-based learning in robotics

Atkeson, C. G., Schaal, S.

In Proceedings of the Sixth International Symposium on Robotics Research, pages: 503-521, Hidden Valley, PA, 1993, clmc (inproceedings)

am

[BibTex]

[BibTex]


no image
Design concurrent calculation: A CAD- and data-integrated approach

Schaal, S., Ehrlenspiel, K.

Journal of Engineering Design, 4, pages: 71-85, 1993, clmc (article)

Abstract
Besides functional regards, product design demands increasingly more for further reaching considerations. Quality alone cannot suffice anymore to compete in the market; design for manufacturability, for assembly, for recycling, etc., are well-known keywords. Those can largely be reduced to the necessity of design for costs. This paper focuses on a CAD-based approach to design concurrent calculation. It will discuss how, in the meantime well-established, tools like feature technology, knowledge-based systems, and relational databases can be blended into one coherent concept to achieve an entirely CAD- and data-integrated cost information tool. This system is able to extract data from the CAD-system, combine it with data about the company specific manufacturing environment, and subsequently autonomously evaluate manufacturability aspects and costs of the given CAD-model. Within minutes the designer gets quantitative in-formation about the major cost sources of his/her design. Additionally, some alternative methods for approximating manu-facturing times from empirical data, namely neural networks and local weighted regression, are introduced.

am

[BibTex]

[BibTex]


Thumb xl ijcai
Action, representation, and purpose: Re-evaluating the foundations of computational vision

Black, M. J., Aloimonos, Y., Brown, C. M., Horswill, I., Malik, J., G. Sandini, , Tarr, M. J.

In International Joint Conference on Artificial Intelligence, IJCAI-93, pages: 1661-1666, Chambery, France, 1993 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Open loop stable control strategies for robot juggling

Schaal, S., Atkeson, C. G.

In IEEE International Conference on Robotics and Automation, 3, pages: 913-918, Piscataway, NJ: IEEE, Georgia, Atlanta, May 2-6, 1993, clmc (inproceedings)

Abstract
In a series of case studies out of the field of dynamic manipulation (Mason, 1992), different principles for open loop stable control are introduced and analyzed. This investigation may provide some insight into how open loop control can serve as a useful foundation for closed loop control and, particularly, what to focus on in learning control. 

am

link (url) [BibTex]

link (url) [BibTex]