Header logo is


2020


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, September 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

ps

project page pdf preprint [BibTex]

2020


project page pdf preprint [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873–-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

Paper Publisher Version poster link (url) DOI [BibTex]

Paper Publisher Version poster link (url) DOI [BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Drama, Ö., Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 15(3), March 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

Youtube Video link (url) DOI [BibTex]

Youtube Video link (url) DOI [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


Effective Viscous Damping Enables Morphological Computation in Legged Locomotion
Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

2020 (article) In revision

Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

dlg

Youtube link (url) [BibTex]


Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study
Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study

Oezge Drama, , Johanna Vielemeyer, , Alexander Badri-Spröwitz, , Müller, R.

2020 (article) In revision

Abstract
Postural stability is one of the most crucial elements in bipedal locomotion. Bipeds are dynamically unstable and need to maintain their trunk upright against the rotations induced by the ground reaction forces (GRFs), especially when running. Gait studies report that the GRF vectors focus around a virtual point above the center of mass (VPA), while the trunk moves forward in pitch axis during the stance phase of human running. However, a recent simulation study suggests that a virtual point below the center of mass (VPB) might be present in human running, since a VPA yields backward trunk rotation during the stance phase. In this work, we perform a gait analysis to investigate the existence and location of the VP in human running at 5 m s−1, and support our findings numerically using the spring-loaded inverted pendulum model with a trunk (TSLIP). We extend our analysis to include perturbations in terrain height (visible and camouflaged), and investigate the response of the VP mechanism to step-down perturbations both experimentally and numerically. Our experimental results show that the human running gait displays a VPB of ≈ −30 cm and a forward trunk motion during the stance phase. The camouflaged step-down perturbations affect the location of the VPB. Our simulation results suggest that the VPB is able to encounter the step-down perturbations and bring the system back to its initial equilibrium state.

dlg

link (url) [BibTex]

link (url) [BibTex]


Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot
Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot

Petereit, R.

Technische Universität München, 2020 (mastersthesis)

dlg

[BibTex]