Header logo is


2016


Thumb xl psychscience
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M. Q., Streuber, S., Hahn, C. A., Black, M. J., O’Toole, A. J.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

ps

pdf [BibTex]

2016


pdf [BibTex]


Thumb xl smplify
Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M. J.

In Computer Vision – ECCV 2016, pages: 561-578, Lecture Notes in Computer Science, Springer International Publishing, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we fi rst use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fi t it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.

ps

pdf Video Sup Mat video Code Project Project Page [BibTex]

pdf Video Sup Mat video Code Project Project Page [BibTex]


Thumb xl gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster Project Page Project Page [BibTex]

pdf supplementary poster Project Page Project Page [BibTex]


Thumb xl thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

In ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (inproceedings)

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


Thumb xl cover
Dynamic baseline stereo vision-based cooperative target tracking

Ahmad, A., Ruff, E., Bülthoff, H.

19th International Conference on Information Fusion, pages: 1728-1734, July 2016 (conference)

Abstract
In this article we present a new method for multi-robot cooperative target tracking based on dynamic baseline stereo vision. The core novelty of our approach includes a computationally light-weight scheme to compute the 3D stereo measurements that exactly satisfy the epipolar constraints and a covariance intersection (CI)-based method to fuse the 3D measurements obtained by each individual robot. Using CI we are able to systematically integrate the robot localization uncertainties as well as the uncertainties in the measurements generated by the monocular camera images from each individual robot into the resulting stereo measurements. Through an extensive set of simulation and real robot results we show the robustness and accuracy of our approach with respect to ground truth. The source code related to this article is publicly accessible on our website and the datasets are available on request.

ps

DOI [BibTex]

DOI [BibTex]


Thumb xl webteaser
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

ps

pdf web tool video talk (ppt) [BibTex]

pdf web tool video talk (ppt) [BibTex]


Thumb xl teaser
DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation

Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., Schiele, B.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 4929-4937, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
This paper considers the task of articulated human pose estimation of multiple people in real-world images. We propose an approach that jointly solves the tasks of detection and pose estimation: it infers the number of persons in a scene, identifies occluded body parts, and disambiguates body parts between people in close proximity of each other. This joint formulation is in contrast to previous strategies, that address the problem by first detecting people and subsequently estimating their body pose. We propose a partitioning and labeling formulation of a set of body-part hypotheses generated with CNN-based part detectors. Our formulation, an instance of an integer linear program, implicitly performs non-maximum suppression on the set of part candidates and groups them to form configurations of body parts respecting geometric and appearance constraints. Experiments on four different datasets demonstrate state-of-the-art results for both single person and multi person pose estimation.

ps

code pdf supplementary DOI Project Page [BibTex]

code pdf supplementary DOI Project Page [BibTex]


Thumb xl tsaiteaser
Video segmentation via object flow

Tsai, Y., Yang, M., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Video object segmentation is challenging due to fast moving objects, deforming shapes, and cluttered backgrounds. Optical flow can be used to propagate an object segmentation over time but, unfortunately, flow is often inaccurate, particularly around object boundaries. Such boundaries are precisely where we want our segmentation to be accurate. To obtain accurate segmentation across time, we propose an efficient algorithm that considers video segmentation and optical flow estimation simultaneously. For video segmentation, we formulate a principled, multiscale, spatio-temporal objective function that uses optical flow to propagate information between frames. For optical flow estimation, particularly at object boundaries, we compute the flow independently in the segmented regions and recompose the results. We call the process object flow and demonstrate the effectiveness of jointly optimizing optical flow and video segmentation using an iterative scheme. Experiments on the SegTrack v2 and Youtube-Objects datasets show that the proposed algorithm performs favorably against the other state-of-the-art methods.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl capital
Patches, Planes and Probabilities: A Non-local Prior for Volumetric 3D Reconstruction

Ulusoy, A. O., Black, M. J., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
In this paper, we propose a non-local structured prior for volumetric multi-view 3D reconstruction. Towards this goal, we present a novel Markov random field model based on ray potentials in which assumptions about large 3D surface patches such as planarity or Manhattan world constraints can be efficiently encoded as probabilistic priors. We further derive an inference algorithm that reasons jointly about voxels, pixels and image segments, and estimates marginal distributions of appearance, occupancy, depth, normals and planarity. Key to tractable inference is a novel hybrid representation that spans both voxel and pixel space and that integrates non-local information from 2D image segmentations in a principled way. We compare our non-local prior to commonly employed local smoothness assumptions and a variety of state-of-the-art volumetric reconstruction baselines on challenging outdoor scenes with textureless and reflective surfaces. Our experiments indicate that regularizing over larger distances has the potential to resolve ambiguities where local regularizers fail.

avg ps

YouTube pdf poster suppmat Project Page [BibTex]

YouTube pdf poster suppmat Project Page [BibTex]


Thumb xl ijcv tumb
Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.

International Journal of Computer Vision (IJCV), 118(2):172-193, June 2016 (article)

Abstract
Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.

ps

Website pdf link (url) DOI Project Page [BibTex]

Website pdf link (url) DOI Project Page [BibTex]


Thumb xl header
Optical Flow with Semantic Segmentation and Localized Layers

Sevilla-Lara, L., Sun, D., Jampani, V., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3889-3898, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Existing optical flow methods make generic, spatially homogeneous, assumptions about the spatial structure of the flow. In reality, optical flow varies across an image depending on object class. Simply put, different objects move differently. Here we exploit recent advances in static semantic scene segmentation to segment the image into objects of different types. We define different models of image motion in these regions depending on the type of object. For example, we model the motion on roads with homographies, vegetation with spatially smooth flow, and independently moving objects like cars and planes with affine motion plus deviations. We then pose the flow estimation problem using a novel formulation of localized layers, which addresses limitations of traditional layered models for dealing with complex scene motion. Our semantic flow method achieves the lowest error of any published monocular method in the KITTI-2015 flow benchmark and produces qualitatively better flow and segmentation than recent top methods on a wide range of natural videos.

ps

video Kitti Precomputed Data (1.6GB) pdf YouTube Sequences Code Project Page Project Page [BibTex]

video Kitti Precomputed Data (1.6GB) pdf YouTube Sequences Code Project Page Project Page [BibTex]


Thumb xl tes cvpr16 bilateral
Learning Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural Networks

Jampani, V., Kiefel, M., Gehler, P. V.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 4452-4461, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Bilateral filters have wide spread use due to their edge-preserving properties. The common use case is to manually choose a parametric filter type, usually a Gaussian filter. In this paper, we will generalize the parametrization and in particular derive a gradient descent algorithm so the filter parameters can be learned from data. This derivation allows to learn high dimensional linear filters that operate in sparsely populated feature spaces. We build on the permutohedral lattice construction for efficient filtering. The ability to learn more general forms of high-dimensional filters can be used in several diverse applications. First, we demonstrate the use in applications where single filter applications are desired for runtime reasons. Further, we show how this algorithm can be used to learn the pairwise potentials in densely connected conditional random fields and apply these to different image segmentation tasks. Finally, we introduce layers of bilateral filters in CNNs and propose bilateral neural networks for the use of high-dimensional sparse data. This view provides new ways to encode model structure into network architectures. A diverse set of experiments empirically validates the usage of general forms of filters.

ps

project page code CVF open-access pdf supplementary poster Project Page Project Page [BibTex]

project page code CVF open-access pdf supplementary poster Project Page Project Page [BibTex]


Thumb xl futeaser
Occlusion boundary detection via deep exploration of context

Fu, H., Wang, C., Tao, D., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Occlusion boundaries contain rich perceptual information about the underlying scene structure. They also provide important cues in many visual perception tasks such as scene understanding, object recognition, and segmentation. In this paper, we improve occlusion boundary detection via enhanced exploration of contextual information (e.g., local structural boundary patterns, observations from surrounding regions, and temporal context), and in doing so develop a novel approach based on convolutional neural networks (CNNs) and conditional random fields (CRFs). Experimental results demonstrate that our detector significantly outperforms the state-of-the-art (e.g., improving the F-measure from 0.62 to 0.71 on the commonly used CMU benchmark). Last but not least, we empirically assess the roles of several important components of the proposed detector, so as to validate the rationale behind this approach.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl jun teaser
Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

Xie, J., Kiefel, M., Sun, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a probabilistic model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.

avg ps

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


Thumb xl appealingavatarsbig
Appealing female avatars from 3D body scans: Perceptual effects of stylization

Fleming, R., Mohler, B., Romero, J., Black, M. J., Breidt, M.

In 11th Int. Conf. on Computer Graphics Theory and Applications (GRAPP), Febuary 2016 (inproceedings)

Abstract
Advances in 3D scanning technology allow us to create realistic virtual avatars from full body 3D scan data. However, negative reactions to some realistic computer generated humans suggest that this approach might not always provide the most appealing results. Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was most effective, increasing average appeal ratings by approximately 34%.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl teaser web
Human Pose Estimation from Video and IMUs

Marcard, T. V., Pons-Moll, G., Rosenhahn, B.

Transactions on Pattern Analysis and Machine Intelligence PAMI, 38(8):1533-1547, January 2016 (article)

ps

data pdf dataset_documentation [BibTex]

data pdf dataset_documentation [BibTex]


Thumb xl teaser
Deep Discrete Flow

Güney, F., Geiger, A.

Asian Conference on Computer Vision (ACCV), 2016 (conference) Accepted

avg ps

pdf suppmat Project Page [BibTex]

pdf suppmat Project Page [BibTex]


Thumb xl both testbed cropped
Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception

Ahmad, A., Bülthoff, H.

Robotics and Autonomous Systems, 83, pages: 275-286, 2016 (article)

Abstract
In this article we present an online estimator for multirobot cooperative localization and target tracking based on nonlinear least squares minimization. Our method not only makes the rigorous optimization-based approach applicable online but also allows the estimator to be stable and convergent. We do so by employing a moving horizon technique to nonlinear least squares minimization and a novel design of the arrival cost function that ensures stability and convergence of the estimator. Through an extensive set of real robot experiments, we demonstrate the robustness of our method as well as the optimality of the arrival cost function. The experiments include comparisons of our method with i) an extended Kalman filter-based online-estimator and ii) an offline-estimator based on full-trajectory nonlinear least squares.

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl siyong
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S. Y., Romero, J., Loper, M., Machann, J., Black, M.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

ps

publisher website preprint pdf link (url) DOI Project Page [BibTex]

publisher website preprint pdf link (url) DOI Project Page [BibTex]


Thumb xl siyu eccvw
Multi-Person Tracking by Multicuts and Deep Matching

(Winner of the Multi-Object Tracking Challenge ECCV 2016)

Tang, S., Andres, B., Andriluka, M., Schiele, B.

ECCV Workshop on Benchmarking Mutliple Object Tracking, 2016 (conference)

ps

PDF [BibTex]

PDF [BibTex]


Thumb xl website thumbnail
Reconstructing Articulated Rigged Models from RGB-D Videos

Tzionas, D., Gall, J.

In European Conference on Computer Vision Workshops 2016 (ECCVW’16) - Workshop on Recovering 6D Object Pose (R6D’16), pages: 620-633, Springer International Publishing, 2016 (inproceedings)

Abstract
Although commercial and open-source software exist to reconstruct a static object from a sequence recorded with an RGB-D sensor, there is a lack of tools that build rigged models of articulated objects that deform realistically and can be used for tracking or animation. In this work, we fill this gap and propose a method that creates a fully rigged model of an articulated object from depth data of a single sensor. To this end, we combine deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow. The fully rigged model then consists of a watertight mesh, embedded skeleton, and skinning weights.

ps

pdf suppl Project's Website YouTube link (url) DOI [BibTex]

pdf suppl Project's Website YouTube link (url) DOI [BibTex]


Thumb xl jointmc
A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects

Keuper, M., Tang, S., Yu, Z., Andres, B., Brox, T., Schiele, B.

In arXiv:1607.06317, 2016 (inproceedings)

ps

PDF [BibTex]

PDF [BibTex]


Thumb xl screen shot 2016 02 22 at 11.46.41
The GRASP Taxonomy of Human Grasp Types

Feix, T., Romero, J., Schmiedmayer, H., Dollar, A., Kragic, D.

Human-Machine Systems, IEEE Transactions on, 46(1):66-77, 2016 (article)

ps

publisher website pdf DOI Project Page [BibTex]

publisher website pdf DOI Project Page [BibTex]


Thumb xl pami
Map-Based Probabilistic Visual Self-Localization

Brubaker, M. A., Geiger, A., Urtasun, R.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2016 (article)

Abstract
Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on maps which contain more than 2,150km of drivable roads.

avg ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]

2007


Thumb xl floweval
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

ps

pdf [BibTex]

2007


pdf [BibTex]


Thumb xl iccv07b
Shining a light on human pose: On shadows, shading and the estimation of pose and shape,

Balan, A., Black, M. J., Haussecker, H., Sigal, L.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

ps

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
Ensemble spiking activity as a source of cortical control signals in individuals with tetraplegia

Simeral, J. D., Kim, S. P., Black, M. J., Donoghue, J. P., Hochberg, L. R.

Biomedical Engineering Society, BMES, september 2007 (conference)

ps

[BibTex]

[BibTex]


Thumb xl cvpr07scape
Detailed human shape and pose from images

Balan, A., Sigal, L., Black, M. J., Davis, J., Haussecker, H.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, pages: 1-8, Minneapolis, June 2007 (inproceedings)

ps

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
Learning static Gestalt laws through dynamic experience

Ostrovsky, Y., Wulff, J., Sinha, P.

Journal of Vision, 7(9):315-315, ARVO, June 2007 (article)

Abstract
The Gestalt laws (Wertheimer 1923) are widely regarded as the rules that help us parse the world into objects. However, it is unclear as to how these laws are acquired by an infant's visual system. Classically, these “laws” have been presumed to be innate (Kellman and Spelke 1983). But, more recent work in infant development, showing the protracted time-course over which these grouping principles emerge (e.g., Johnson and Aslin 1995; Craton 1996), suggests that visual experience might play a role in their genesis. Specifically, our studies of patients with late-onset vision (Project Prakash; VSS 2006) and evidence from infant development both point to an early role of common motion cues for object grouping. Here we explore the possibility that the privileged status of motion in the developmental timeline is not happenstance, but rather serves to bootstrap the learning of static Gestalt cues. Our approach involves computational analyses of real-world motion sequences to investigate whether primitive optic flow information is correlated with static figural cues that could eventually come to serve as proxies for grouping in the form of Gestalt principles. We calculated local optic flow maps and then examined how similarity of motion across image patches co-varied with similarity of certain figural properties in static frames. Results indicate that patches with similar motion are much more likely to have similar luminance, color, and orientation as compared to patches with dissimilar motion vectors. This regularity suggests that, in principle, common motion extracted from dynamic visual experience can provide enough information to bootstrap region grouping based on luminance and color and contour continuation mechanisms in static scenes. These observations, coupled with the cited experimental studies, lend credence to the hypothesis that static Gestalt laws might be learned through a bootstrapping process based on early dynamic experience.

ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl aperture
Decoding grasp aperture from motor-cortical population activity

Artemiadis, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 518-521, May 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl ner07
Multi-state decoding of point-and-click control signals from motor cortical activity in a human with tetraplegia

Kim, S., Simeral, J., Hochberg, L., Donoghue, J. P., Friehs, G., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 486-489, May 2007 (inproceedings)

Abstract
Basic neural-prosthetic control of a computer cursor has been recently demonstrated by Hochberg et al. [1] using the BrainGate system (Cyberkinetics Neurotechnology Systems, Inc.). While these results demonstrate the feasibility of intracortically-driven prostheses for humans with paralysis, a practical cursor-based computer interface requires more precise cursor control and the ability to “click” on areas of interest. Here we present a practical point and click device that decodes both continuous states (e.g. cursor kinematics) and discrete states (e.g. click state) from single neural population in human motor cortex. We describe a probabilistic multi-state decoder and the necessary training paradigms that enable point and click cursor control by a human with tetraplegia using an implanted microelectrode array. We present results from multiple recording sessions and quantify the point and click performance.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl pedestal
Neuromotor prosthesis development

Donoghue, J., Hochberg, L., Nurmikko, A., Black, M., Simeral, J., Friehs, G.

Medicine & Health Rhode Island, 90(1):12-15, January 2007 (article)

Abstract
Article describes a neuromotor prosthesis (NMP), in development at Brown University, that records human brain signals, decodes them, and transforms them into movement commands. An NMP is described as a system consisting of a neural interface, a decoding system, and a user interface, also called an effector; a closed-loop system would be completed by a feedback signal from the effector to the brain. The interface is based on neural spiking, a source of information-rich, rapid, complex control signals from the nervous system. The NMP described, named BrainGate, consists of a match-head sized platform with 100 thread-thin electrodes implanted just into the surface of the motor cortex where commands to move the hand emanate. Neural signals are decoded by a rack of computers that displays the resultant output as the motion of a cursor on a computer monitor. While computer cursor motion represents a form of virtual device control, this same command signal could be routed to a device to command motion of paralyzed muscles or the actions of prosthetic limbs. The researchers’ overall goal is the development of a fully implantable, wireless multi-neuron sensor for broad research, neural prosthetic, and human neurodiagnostic applications.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl ijcvflow2
On the spatial statistics of optical flow

Roth, S., Black, M. J.

International Journal of Computer Vision, 74(1):33-50, 2007 (article)

Abstract
We present an analysis of the spatial and temporal statistics of "natural" optical flow fields and a novel flow algorithm that exploits their spatial statistics. Training flow fields are constructed using range images of natural scenes and 3D camera motions recovered from hand-held and car-mounted video sequences. A detailed analysis of optical flow statistics in natural scenes is presented and machine learning methods are developed to learn a Markov random field model of optical flow. The prior probability of a flow field is formulated as a Field-of-Experts model that captures the spatial statistics in overlapping patches and is trained using contrastive divergence. This new optical flow prior is compared with previous robust priors and is incorporated into a recent, accurate algorithm for dense optical flow computation. Experiments with natural and synthetic sequences illustrate how the learned optical flow prior quantitatively improves flow accuracy and how it captures the rich spatial structure found in natural scene motion.

ps

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Thumb xl screen shot 2012 06 06 at 11.20.23 am
Deterministic Annealing for Multiple-Instance Learning

Gehler, P., Chapelle, O.

In Artificial Intelligence and Statistics (AIStats), 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Point-and-click cursor control by a person with tetraplegia using an intracortical neural interface system

Kim, S., Simeral, J. D., Hochberg, L. R., Friehs, G., Donoghue, J. P., Black, M. J.

Program No. 517.2. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


Thumb xl arrayhd
Assistive technology and robotic control using MI ensemble-based neural interface systems in humans with tetraplegia

Donoghue, J. P., Nurmikko, A., Black, M. J., Hochberg, L.

Journal of Physiology, Special Issue on Brain Computer Interfaces, 579, pages: 603-611, 2007 (article)

Abstract
This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allowpersonswith paralysis to operate assistive technologies or to reanimatemuscles based upon a command signal that is obtained directly fromthe brain. Such systems require the development of sensors to detect brain signals, decoders to transformneural activity signals into a useful command, and an interface for the user.We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex.We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication.We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.

ps

pdf preprint pdf from publisher DOI [BibTex]

pdf preprint pdf from publisher DOI [BibTex]


Thumb xl screen shot 2012 02 23 at 1.59.51 pm
Learning Appearances with Low-Rank SVM

Wolf, L., Jhuang, H., Hazan, T.

In Conference on Computer Vision and Pattern Recognition (CVPR), 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Neural correlates of grip aperture in primary motor cortex

Vargas-Irwin, C., Shakhnarovich, G., Artemiadis, P., Donoghue, J. P., Black, M. J.

Program No. 517.10. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


no image
Directional tuning in motor cortex of a person with ALS

Simeral, J. D., Donoghue, J. P., Black, M. J., Friehs, G. M., Brown, R. H., Krivickas, L. S., Hochberg, L. R.

Program No. 517.4. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


Thumb xl srf
Steerable random fields

(Best Paper Award, INI-Graphics Net, 2008)

Roth, S., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Toward standardized assessment of pointing devices for brain-computer interfaces

Donoghue, J., Simeral, J., Kim, S., G.M. Friehs, L. H., Black, M.

Program No. 517.16. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


Thumb xl alg
A Biologically Inspired System for Action Recognition

Jhuang, H., Serre, T., Wolf, L., Poggio, T.

In International Conference on Computer Vision (ICCV), 2007 (inproceedings)

ps

code pdf [BibTex]

code pdf [BibTex]


no image
AREADNE Research in Encoding And Decoding of Neural Ensembles

Shakhnarovich, G., Hochberg, L. R., Donoghue, J. P., Stein, J., Brown, R. H., Krivickas, L. S., Friehs, G. M., Black, M. J.

Program No. 517.8. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]

1992


Thumb xl arvo92
Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum

Tarr, M. J., Black, M. J.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, 33, pages: 1050, May 1992 (conference)

ps

abstract [BibTex]

1992


abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 12.01.23
Combining intensity and motion for incremental segmentation and tracking over long image sequences

Black, M. J.

In Proc. Second European Conf. on Computer Vision, ECCV-92, pages: 485-493, LNCS 588, Springer Verlag, May 1992 (inproceedings)

ps

pdf video abstract [BibTex]

pdf video abstract [BibTex]

1991


Thumb xl ijcai91
Dynamic motion estimation and feature extraction over long image sequences

Black, M. J., Anandan, P.

In Proc. IJCAI Workshop on Dynamic Scene Understanding, Sydney, Australia, August 1991 (inproceedings)

ps

[BibTex]

1991


[BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 12.06.42
Robust dynamic motion estimation over time

(IEEE Computer Society Outstanding Paper Award)

Black, M. J., Anandan, P.

In Proc. Computer Vision and Pattern Recognition, CVPR-91,, pages: 296-302, Maui, Hawaii, June 1991 (inproceedings)

Abstract
This paper presents a novel approach to incrementally estimating visual motion over a sequence of images. We start by formulating constraints on image motion to account for the possibility of multiple motions. This is achieved by exploiting the notions of weak continuity and robust statistics in the formulation of the minimization problem. The resulting objective function is non-convex. Traditional stochastic relaxation techniques for minimizing such functions prove inappropriate for the task. We present a highly parallel incremental stochastic minimization algorithm which has a number of advantages over previous approaches. The incremental nature of the scheme makes it truly dynamic and permits the detection of occlusion and disocclusion boundaries.

ps

pdf video abstract [BibTex]

pdf video abstract [BibTex]