Header logo is


2018


Impact of Trunk Orientation  for Dynamic Bipedal Locomotion
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, Ö.

Dynamic Walking Conference, May 2018 (talk)

Abstract
Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.

dlg

Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) Project Page [BibTex]


no image
Beyond Bounded Rationality: Reverse-Engineering and Enhancing Human Intelligence

(Glushko Prize 2020)

Lieder, F.

University of California, Berkeley, 2018 (phdthesis)

Abstract
Bad decisions can have devastating consequences: There is a vast body of literature claiming that human judgment and decision-making are riddled with numerous systematic violations of the rules of logic, probability theory, and expected utility theory. The discovery of these cognitive biases in the 1970s (Tversky & Kahneman, 1974) made people question the concept of Homo sapiens as the rational animal, profoundly shaking the foundations of economics and rational models in the cognitive, neural, and social sciences. Four decades later, these disciplines still lack a rigorous theoretical foundation for explaining and remedying people’s cognitive biases. To solve this problem, my dissertation offers a mathematically precise theory of bounded rationality and demonstrates how it can be leveraged to elucidate the cognitive mechanisms of judgment and decision-making (Part 1) and to help people make better decisions (Part 2).

re

Précis of Beyond Bounded Rationality: Reverse-Engineering and Enhancing Human Intelligence DOI [BibTex]