52 results
(View BibTeX file of all listed publications)

**Robot Learning for Muscular Robots**
Technical University Darmstadt, Germany, December 2019 (phdthesis)

**Real Time Probabilistic Models for Robot Trajectories**
Technical University Darmstadt, Germany, December 2019 (phdthesis)

**Learning Transferable Representations**
University of Cambridge, UK, 2019 (phdthesis)

**Sample-efficient deep reinforcement learning for continuous control**
University of Cambridge, UK, 2019 (phdthesis)

**Formally justified and modular Bayesian inference for probabilistic programs**
University of Cambridge, UK, 2019 (phdthesis)

**Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing**
Technical University of Munich, Germany, 2019 (mastersthesis)

**Pragmatism and Variable Transformations in Causal Modelling**
ETH Zurich, 2019 (phdthesis)

**Quantification of tumor heterogeneity using PET/MRI and machine learning**
Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

**Advances in Probabilistic Modelling: Sparse Gaussian Processes, Autoencoders, and Few-shot Learning**
University of Cambridge, UK, 2019 (phdthesis)

**A virtual reality environment for experiments in assistive robotics and neural interfaces**
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

**Optimal Trajectory Generation and Learning Control for Robot Table Tennis**
Technical University Darmstadt, Germany, 2018 (phdthesis)

**On the Applicability of Machine Learning to Aid the Search for Gravitational Waves at the LIGO Experiment**
Karlsruhe Institute of Technology, Germany, 2018 (mastersthesis)

**Distribution-Dissimilarities in Machine Learning**
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

**Domain Adaptation Under Causal Assumptions**
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei
Suter, R.
**A Causal Perspective on Deep Representation Learning**
ETH Zurich, 2018 (mastersthesis)

**Probabilistic Approaches to Stochastic Optimization**
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

**Improving Tissue Differentiation based on Optical Emission Spectroscopy for Guided Electrosurgical Tumor Resection with Machine Learning**
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

**Reinforcement Learning for High-Speed Robotics with Muscular Actuation**
Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

**Probabilistic Ordinary Differential Equation Solvers — Theory and Applications**
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

** A machine learning approach to taking EEG-based computer interfaces out of the lab**
Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

**easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies**
Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

**Causal Discovery Beyond Conditional Independences**
Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

**Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism**
*53rd Annual Allerton Conference on Communication, Control, and Computing*, September 2015 (talk)

**From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding**
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

**Machine Learning Approaches to Image Deconvolution**
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

**Blind Retrospective Motion Correction of MR Images**
University of Tübingen, Germany, May 2015 (phdthesis)

**Independence of cause and mechanism in brain networks**
*DALI workshop on Networks: Processes and Causality*, April 2015 (talk)

**Information-Theoretic Implications of Classical and Quantum Causal Structures **
18th Conference on Quantum Information Processing (QIP), 2015 (talk)

**A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**Sequential Image Deconvolution Using Probabilistic Linear Algebra**
Technical University of Munich, Germany, 2015 (mastersthesis)

**Causal Inference in Neuroimaging**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**The effect of frowning on attention**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**The search for single exoplanet transits in the Kepler light curves**
*IAU General Assembly*, 22, pages: 2258352, 2015 (talk)

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Semi-Supervised Learning**
pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

**MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models**
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

**Sampling for non-conjugate infinite latent feature models**
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

**Kernel PCA for Image Compression**
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)

**An Inventory of Sequence Polymorphisms For Arabidopsis**
17th International Conference on Arabidopsis Research, April 2006 (talk)

**Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning**
Biologische Kybernetik, Technische Universität Darmstadt, Darmstadt, Germany, March 2006, passed with distinction, published online (phdthesis)