Header logo is


2019


Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

2019


PDF [BibTex]


no image
Load-inducing factors in instructional design: Process-related advances in theory and assessment

Wirzberger, M.

TU Chemnitz, 2019 (phdthesis)

Abstract
This thesis addresses ongoing controversies in cognitive load research related to the scope and interplay of resource-demanding factors in instructional situations on a temporal perspective. In a novel approach, it applies experimental task frameworks from basic cognitive research and combines different methods for assessing cognitive load and underlying cognitive processes. Taken together, the obtained evidence emphasizes a process-related reconceptualization of the existing theoretical cognitive load framework and underlines the importance of a multimethod-approach to continuous cognitive load assessment. On a practical side, it informs the development of adaptive algorithms and the learner-aligned design of instructional support and thus leverages a pathway towards intelligent educational assistants.

re

link (url) [BibTex]


no image
Actively Learning Dynamical Systems with Gaussian Processes

Buisson-Fenet, M.

Mines ParisTech, PSL University, 2019 (mastersthesis)

Abstract
Predicting the behavior of complex systems is of great importance in many fields such as engineering, economics or meteorology. The evolution of such systems often follows a certain structure, which can be induced, for example from the laws of physics or of market forces. Mathematically, this structure is often captured by differential equations. The internal functional dependencies, however, are usually unknown. Hence, using machine learning approaches that recreate this structure directly from data is a promising alternative to designing physics-based models. In particular, for high dimensional systems with nonlinear effects, this can be a challenging task. Learning dynamical systems is different from the classical machine learning tasks, such as image processing, and necessitates different tools. Indeed, dynamical systems can be actuated, often by applying torques or voltages. Hence, the user has a power of decision over the system, and can drive it to certain states by going through the dynamics. Actuating this system generates data, from which a machine learning model of the dynamics can be trained. However, gathering informative data that is representative of the whole state space remains a challenging task. The question of active learning then becomes important: which control inputs should be chosen by the user so that the data generated during an experiment is informative, and enables efficient training of the dynamics model? In this context, Gaussian processes can be a useful framework for approximating system dynamics. Indeed, they perform well on small and medium sized data sets, as opposed to most other machine learning frameworks. This is particularly important considering data is often costly to generate and process, most of all when producing it involves actuating a complex physical system. Gaussian processes also yield a notion of uncertainty, which indicates how sure the model is about its predictions. In this work, we investigate in a principled way how to actively learn dynamical systems, by selecting control inputs that generate informative data. We model the system dynamics by a Gaussian process, and use information-theoretic criteria to identify control trajectories that maximize the information gain. Thus, the input space can be explored efficiently, leading to a data-efficient training of the model. We propose several methods, investigate their theoretical properties and compare them extensively in a numerical benchmark. The final method proves to be efficient at generating informative data. Thus, it yields the lowest prediction error with the same amount of samples on most benchmark systems. We propose several variants of this method, allowing the user to trade off computations with prediction accuracy, and show it is versatile enough to take additional objectives into account.

ics

[BibTex]

[BibTex]

2015


Gaussian Process Optimization for Self-Tuning Control
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

am ics

PDF Project Page [BibTex]

2015


PDF Project Page [BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

am ics

[BibTex]

[BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]

2005


no image
Bruder sein das ist nicht schwer, Schwester sein dagegen sehr?" - Geschlechtsspezifische Betrachtungsweisen zur Situation von Geschwistern behinderter Kinder und Jugendlicher

Wirzberger, M.

Protestant University of Applied Sciences, Bochum, 2005 (thesis)

Abstract
Die Diplomarbeit beschäftigt sich mit der Lebenssituation von Geschwistern behinderter Kinder und Jugendlicher und berücksichtigt hier besonders den Aspekt des Geschlechts. Nach einer Darstellung familiensoziologischer Grundlagen erläutert die Verfasserin den hohen Stellenwert von Geschwisterbeziehungen innerhalb der Familie, sowie deren Entwicklung und Veränderung im Laufe des Lebens. Der Schwerpunkt liegt dabei auf dem Kindes- und Jugendalter. Anschließend werden Grundlagen, Prozesse und Mechanismen geschlechtsspezifischer Sozialisation, und die Auswirkungen des Geschlechts auf die Geschwisterbeziehung thematisiert. Kapitel 3 beschäftigt sich zunächst mit dem Begriff der Behinderung mit Bezug auf das SGB IX und die ICF. Danach beschreibt die Verfasserin, mit welchen spezifischen Belastungen sich die Eltern behinderter Kinder und Jugendlicher konfrontiert sehen. Die Auswirkungen einer Behinderung auf die Geschwister stehen im Mittelpunkt dieser Arbeit und werden anhand von Studien von HACKENBERG und GROSSMAN, sowie Aussagen von ACHILLES ausführlich dargestellt, wobei auch hier der Aspekt des Geschlechts detailliert in die Schilderung der Situation einbezogen wird. Um eine Verbindung von Theorie und Praxis zu gewährleisten, werden zusammenfassende Hypothesen formuliert und anhand von drei Fallgeschichten exemplarisch überprüft. Abschließend erläutert die Verfasserin die Konsequenzen ihrer Diplomarbeit für die heilpädagogische Arbeit.

re

DOI [BibTex]