Header logo is


2014


no image
Smart@load? Modeling interruption while using a Smartphone-app in alternating workload conditions

Wirzberger, M.

TU Berlin, 2014 (mastersthesis)

Abstract
Based on a time course model of interruption and resumption, the current thesis aims to inspect cognitive processes after being interrupted by product advertisements while performing a shopping task with a smartphone application. In doing so, different levels of mental workload, which are assumed to influence human performance as well as resumption strategy choice in this context, are taken into account. Within the applied research approach, cognitive modeling in the framework of the cognitive architecture ACT-R is combined with the development of a corresponding experimental design. The derived model predictions are validated with a 2x3-factorial design that includes repeated measures upon the second factor, and consists of 62 human participants. In detail, the influence of mental workload (high vs. low) and interruption (no vs. low vs. high) on various aspects of task-related performance and the applied resumption strategy is assessed. While the inspected performance parameters and resumption strategy choice usually point towards the expected direction for the model data, a converse pattern for the human data shows up in most cases. Comparing model and human data for each level of workload displays rather mixed results that are discussed afterwards. An outline of potential expansions and toeholds for future research within and beyond the mobile sector forms the completion of the thesis.

re

DOI [BibTex]


no image
Opto-thermal micro-transportation for cellular microbiology

Hu, W.

University of Hawai’i at Manoa, 2014 (phdthesis)

pi

[BibTex]

[BibTex]