am
ei
Peters, J., Schaal, S.
Learning to control in operational space
International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)
am
M. Mistry, E. A. G. L. T. Y. S. S. M. K.
Adaptation to a sub-optimal desired trajectory
Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)
am
Hoffmann, H., Schaal, S.
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment
In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)
am
Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.
Operational space control: A theoretical and emprical comparison
International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)
am
Park, D., Hoffmann, H., Pastor, P., Schaal, S.
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields
In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)
am
Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.
The dual role of uncertainty in force field learning
In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)
am
Hoffmann, H., Pastor, P., Schaal, S.
Dynamic movement primitives for movement generation motivated by convergent force fields in frog
In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)
am
Tevatia, G., Schaal, S.
Efficient inverse kinematics algorithms for highdimensional movement systems
CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)
am
Hoffmann, H., Theodorou, E., Schaal, S.
Behavioral experiments on reinforcement learning in human motor control
In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)
am
Pastor, P., Hoffmann, H., Schaal, S.
Movement generation by learning from demonstration and generalization to new targets
In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)
am
Park, D., Hoffmann, H., Schaal, S.
Combining dynamic movement primitives and potential fields for online obstacle avoidance
In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)
am
Klanke, S., Vijayakumar, S., Schaal, S.
A library for locally weighted projection regression
Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)
am
Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.
Computational model for movement learning under uncertain cost
In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)
am
Hoffmann, H., Theodorou, E., Schaal, S.
Optimization strategies in human reinforcement learning
Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)
am
Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.
A Bayesian approach to empirical local linearizations for robotics
In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)
am
Hoffmann, H., Schaal, S.
Do humans plan continuous trajectories in kinematic coordinates?
In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)
am
ei
Peters, J., Schaal, S.
Learning operational space control
In Robotics: Science and Systems II (RSS 2006), pages: 255-262, (Editors: Gaurav S. Sukhatme and Stefan Schaal and Wolfram Burgard and Dieter Fox), Cambridge, MA: MIT Press, RSS , 2006, clmc (inproceedings)
am
ei
Peters, J., Schaal, S.
Reinforcement Learning for Parameterized Motor Primitives
In Proceedings of the 2006 International Joint Conference on Neural Networks, pages: 73-80, IJCNN, 2006, clmc (inproceedings)
am
Theodorou, E.
Statistical Learning of LQG controllers
Technical Report-2006-1, Computational Action and Vision Lab University of Minnesota, 2006, clmc (techreport)
am
Vijayakumar, S., DSouza, A., Schaal, S.
Approximate nearest neighbor regression in very high dimensions
In Nearest-Neighbor Methods in Learning and Vision, pages: 103-142, (Editors: Shakhnarovich, G.;Darrell, T.;Indyk, P.), Cambridge, MA: MIT Press, 2006, clmc (inbook)