30 results
(View BibTeX file of all listed publications)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism**
*53rd Annual Allerton Conference on Communication, Control, and Computing*, September 2015 (talk)

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Independence of cause and mechanism in brain networks**
*DALI workshop on Networks: Processes and Causality*, April 2015 (talk)

**Information-Theoretic Implications of Classical and Quantum Causal Structures **
18th Conference on Quantum Information Processing (QIP), 2015 (talk)

**The search for single exoplanet transits in the Kepler light curves**
*IAU General Assembly*, 22, pages: 2258352, 2015 (talk)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**Some thoughts about Gaussian Processes**
NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

ei
Chapelle, O.
**A taxonomy of semi-supervised learning algorithms**
Yahoo!, December 2005 (talk)

**Building Sparse Large Margin Classifiers**
The 22nd International Conference on Machine Learning (ICML), August 2005 (talk)

**Learning from Labeled and Unlabeled Data on a Directed Graph**
The 22nd International Conference on Machine Learning, August 2005 (talk)

**Machine-Learning Approaches to BCI in Tübingen**
Brain-Computer Interface Technology, June 2005, Talk given by NJH. (talk)

**Kernel Constrained Covariance for Dependence Measurement**
AISTATS, January 2005 (talk)

**Support Vector Machines and Kernel Algorithms**
In *Encyclopedia of Biostatistics (2nd edition), Vol. 8*, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)

**Visual perception
I: Basic principles**
In *Handbook of Cognition*, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)

**Remarks on Statistical Learning Theory**
Machine Learning Summer School, August 2003 (talk)

**Rademacher and Gaussian averages in Learning Theory**
Universite de Marne-la-Vallee, March 2003 (talk)

ei
Bousquet, O., Schölkopf, B.
**Statistical Learning Theory**
March 2003 (talk)

**Concentration Inequalities and Data-Dependent Error Bounds**
Uni. Jena, February 2003 (talk)

**Introduction: Robots with Cognition?**
6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

**Extension of the nu-SVM range for classification**
In *Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190*, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

**An Introduction to Support Vector Machines**
In *Recent Advances and Trends in Nonparametric Statistics
*, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

**Statistical Learning and Kernel Methods in Bioinformatics**
In *Artificial Intelligence and Heuristic Methods in Bioinformatics*, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

**A Short Introduction to Learning with Kernels**
In *Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600*, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

**Bayesian Kernel Methods**
In *Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600*, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)

**Stability of ensembles of kernel machines**
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)

**Advances in Large Margin Classifiers**
pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

**An Introduction to Kernel-Based Learning Algorithms**
In *Handbook of Neural Network Signal Processing*, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)