re
Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.
How do people learn how to plan?
Conference on Cognitive Computational Neuroscience, September 2019 (conference)
re
Xu, L., Wirzberger, M., Lieder, F.
How should we incentivize learning? An optimal feedback mechanism for educational games and online courses
41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)
re
Mohnert, F., Pachur, T., Lieder, F.
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice
41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)
re
Jain, Y. R., Callaway, F., Lieder, F.
Measuring how people learn how to plan
RLDM 2019, July 2019 (conference)
re
Jain, Y. R., Callaway, F., Lieder, F.
Measuring how people learn how to plan
41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)
re
Lieder, F., Callaway, F., Jain, Y., Krueger, P., Das, P., Gul, S., Griffiths, T.
A cognitive tutor for helping people overcome present bias
RLDM 2019, July 2019 (conference)
re
Iwama, G., Greenberg, S., Moore, D., Lieder, F.
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions
40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)
re
Iwama, G. Y., Wirzberger, M., Lieder, F.
The Goal Characteristics (GC) questionannaire: A comprehensive measure for goals’ content, attainability, interestingness, and usefulness
40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)
ei
pn
Schneider, F., Balles, L., Hennig, P.
DeepOBS: A Deep Learning Optimizer Benchmark Suite
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
pn
Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.
Fast and Robust Shortest Paths on Manifolds Learned from Data
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
pn
ei
de Roos, F., Hennig, P.
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
re
Lieder, F., Griffiths, T. L.
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources
Behavioral and Brain Sciences, 2019 (article)
re
Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P. M., Lieder, F.
Doing more with less: Meta-reasoning and meta-learning in humans and machines
Current Opinion in Behavioral Sciences, 2019 (article)
re
Mohnert, F., Tosic, M., Lieder, F.
Testing Computational Models of Goal Pursuit
2019 (conference)
re
Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T.
Cognitive Prostheses for Goal Achievement
Nature Human Behavior, 2019 (article)
re
Das, P., Callaway, F., Griffiths, T., Lieder, F.
Remediating cognitive decline with cognitive tutors
RLDM 2019, 2019 (conference)
re
Milli, S., Lieder, F., Griffiths, T.
A rational reinterpretation of dual process theories
2019 (article)
pn
Bartels, S., Cockayne, J., Ipsen, I. C. F., Hennig, P.
Probabilistic Linear Solvers: A Unifying View
Statistics and Computing, 2019 (article) Accepted
ei
ps
pn
Hennig, P., Kiefel, M.
Quasi-Newton Methods: A New Direction
In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)
ei
pn
Hennig, P., Schuler, C.
Entropy Search for Information-Efficient Global Optimization
Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)
ei
pn
Bócsi, B., Hennig, P., Csató, L., Peters, J.
Learning Tracking Control with Forward Models
In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)
ei
pn
Cunningham, J., Hennig, P., Lacoste-Julien, S.
Approximate Gaussian Integration using Expectation Propagation
In pages: 1-11, -, January 2012 (inproceedings) Submitted
ei
pn
Hennig, P., Stern, D., Herbrich, R., Graepel, T.
Kernel Topic Models
In Fifteenth International Conference on Artificial Intelligence and Statistics, 22, pages: 511-519, JMLR Proceedings, (Editors: Lawrence, N. D. and Girolami, M.), JMLR.org, AISTATS , 2012 (inproceedings)