Header logo is


2020


AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning
AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning

Tallamraju, R., Saini, N., Bonetto, E., Pabst, M., Liu, Y. T., Black, M., Ahmad, A.

IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, 5(4):6678 - 6685, IEEE, October 2020, Also accepted and presented in the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
In this letter, we introduce a deep reinforcement learning (DRL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap). We focus on vision-based MoCap, where the objective is to estimate the trajectory of body pose, and shape of a single moving person using multiple micro aerial vehicles. State-of-the-art solutions to this problem are based on classical control methods, which depend on hand-crafted system, and observation models. Such models are difficult to derive, and generalize across different systems. Moreover, the non-linearities, and non-convexities of these models lead to sub-optimal controls. In our work, we formulate this problem as a sequential decision making task to achieve the vision-based motion capture objectives, and solve it using a deep neural network-based RL method. We leverage proximal policy optimization (PPO) to train a stochastic decentralized control policy for formation control. The neural network is trained in a parallelized setup in synthetic environments. We performed extensive simulation experiments to validate our approach. Finally, real-robot experiments demonstrate that our policies generalize to real world conditions.

ps

link (url) DOI [BibTex]

2020


link (url) DOI [BibTex]


Chiroptical spectroscopy of a freely diffusing single nanoparticle
Chiroptical spectroscopy of a freely diffusing single nanoparticle

Sachs, J., Günther, J., Mark, A. G., Fischer, P.

Nature Communications, 11(4513), September 2020 (article)

Abstract
Chiral plasmonic nanoparticles can exhibit strong chiroptical signals compared to the corresponding molecular response. Observations are, however, generally restricted to measurements on stationary single particles with a fixed orientation, which complicates the spectral analysis. Here, we report the spectroscopic observation of a freely diffusing single chiral nanoparticle in solution. By acquiring time-resolved circular differential scattering signals we show that the spectral interpretation is significantly simplified. We experimentally demonstrate the equivalence between time-averaged chiral spectra observed for an individual nanostructure and the corresponding ensemble spectra, and thereby demonstrate the ergodic principle for chiroptical spectroscopy. We also show how it is possible for an achiral particle to yield an instantaneous chiroptical response, whereas the time-averaged signals are an unequivocal measure of chirality. Time-resolved chiroptical spectroscopy on a freely moving chiral nanoparticle advances the field of single-particle spectroscopy, and is a means to obtain the true signature of the nanoparticle’s chirality.

pf

link (url) DOI [BibTex]


Microchannels with Self-Pumping Walls
Microchannels with Self-Pumping Walls

Yu, T., Athanassiadis, A., Popescu, M., Chikkadi, V., Güth, A., Singh, D., Qiu, T., Fischer, P.

ACS Nano, September 2020 (article)

Abstract
When asymmetric Janus micromotors are immobilized on a surface, they act as chemically powered micropumps, turning chemical energy from the fluid into a bulk flow. However, such pumps have previously produced only localized recirculating flows, which cannot be used to pump fluid in one direction. Here, we demonstrate that an array of three-dimensional, photochemically active Au/TiO2 Janus pillars can pump water. Upon UV illumination, a water-splitting reaction rapidly creates a directional bulk flow above the active surface. By lining a 2D microchannel with such active surfaces, various flow profiles are created within the channels. Analytical and numerical models of a channel with active surfaces predict flow profiles that agree very well with the experimental results. The light-driven active surfaces provide a way to wirelessly pump fluids at small scales and could be used for real-time, localized flow control in complex microfluidic networks.

pf

link (url) DOI [BibTex]


Scalable Fabrication of Molybdenum Disulfide Nanostructures and their Assembly
Scalable Fabrication of Molybdenum Disulfide Nanostructures and their Assembly

Huang, Y., Yu, K., Li, H., Liang, Z., Walker, D., Ferreira, P., Fischer, P., Fan, D.

Adv. Mat., (2003439), September 2020 (article)

Abstract
Molybdenum disulfide (MoS2) is a multifunctional material that can be used for various applications. In the single‐crystalline form, MoS2 shows superior electronic properties. It is also an exceptionally useful nanomaterial in its polycrystalline form with applications in catalysis, energy storage, water treatment, and gas sensing. Here, the scalable fabrication of longitudinal MoS2 nanostructures, i.e., nanoribbons, and their oxide hybrids with tunable dimensions in a rational and well‐reproducible fashion, is reported. The nanoribbons, obtained at different reaction stages, that is, MoO3, MoS2/MoO2 hybrid, and MoS2, are fully characterized. The growth method presented herein has a high yield and is particularly robust. The MoS2 nanoribbons can readily be removed from its substrate and dispersed in solution. It is shown that functionalized MoS2 nanoribbons can be manipulated in solution and assembled in controlled patterns and directly on microelectrodes with UV‐click‐chemistry. Owing to the high chemical purity and polycrystalline nature, the MoS2 nanostructures demonstrate rapid optoelectronic response to wavelengths from 450 to 750 nm, and successfully remove mercury contaminants from water. The scalable fabrication and manipulation followed by light‐directed assembly of MoS2 nanoribbons, and their unique properties, will be inspiring for device fabrication and applications of the transition metal dichalcogenides.

pf

link (url) [BibTex]

link (url) [BibTex]


Spatial ultrasound modulation by digitally controlling microbubble arrays
Spatial ultrasound modulation by digitally controlling microbubble arrays

Ma, Z., Melde, K., Athanassiadis, A. G., Schau, M., Richter, H., Qiu, T., Fischer, P.

Nature Communications, 11(4537), September 2020 (article)

Abstract
Acoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wavefront shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM),which dynamically reshapes incident plane waves into complex acoustic images. Its trans-mission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM.

pf

link (url) DOI [BibTex]


A little damping goes a long way: a simulation study of how damping influences task-level stability in running
A little damping goes a long way: a simulation study of how damping influences task-level stability in running

Heim, S., Millard, M., Mouel, C. L., Badri-Spröwitz, A.

Biology Letters, 16(9), September 2020 (article)

Abstract
It is currently unclear if damping plays a functional role in legged locomotion, and simple models often do not include damping terms. We present a new model with a damping term that is isolated from other parameters: that is, the damping term can be adjusted without retuning other model parameters for nominal motion. We systematically compare how increased damping affects stability in the face of unexpected ground-height perturbations. Unlike most studies, we focus on task-level stability: instead of observing whether trajectories converge towards a nominal limit-cycle, we quantify the ability to avoid falls using a recently developed mathematical measure. This measure allows trajectories to be compared quantitatively instead of only being separated into a binary classification of ‘stable' or ‘unstable'. Our simulation study shows that increased damping contributes significantly to task-level stability; however, this benefit quickly plateaus after only a small amount of damping. These results suggest that the low intrinsic damping values observed experimentally may have stability benefits and are not simply minimized for energetic reasons. All Python code and data needed to generate our results are available open source.

dlg ics

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Characterization of active matter in dense suspensions with heterodyne laser Doppler velocimetry
Characterization of active matter in dense suspensions with heterodyne laser Doppler velocimetry

Sachs, J., Kottapalli, S. N., Fischer, P., Botin, D., Palberg, T.

Colloid and Polymer Science, August 2020 (article)

Abstract
We present a novel approach for characterizing the properties and performance of active matter in dilute suspension as well as in crowded environments. We use Super-Heterodyne Laser-Doppler-Velocimetry (SH-LDV) to study large ensembles of catalytically active Janus particles moving under UV illumination. SH-LDV facilitates a model-free determination of the swimming speed and direction, with excellent ensemble averaging. In addition, we obtain information on the distribution of the catalytic activity. Moreover, SH-LDV operates away from walls and permits a facile correction for multiple scattering contributions. It thus allows for studies of concentrated suspensions of swimmers or of systems where swimmers propel actively in an environment crowded by passive particles. We demonstrate the versatility and the scope of the method with a few selected examples. We anticipate that SH-LDV complements established methods and paves the way for systematic measurements at previously inaccessible boundary conditions.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Effective Viscous Damping Enables Morphological Computation in Legged Locomotion
Effective Viscous Damping Enables Morphological Computation in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

Frontiers Robots and Ai, 7:110, August 2020 (article)

Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of mechanical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring-damper is engaged between touch-down and mid-stance, and its damper auto-disengages during mid-stance and takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms; a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.

dlg

Youtube link (url) DOI [BibTex]

Youtube link (url) DOI [BibTex]


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, 39(5), August 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

ps

project page pdf preprint DOI [BibTex]

project page pdf preprint DOI [BibTex]


no image
Measuring the Costs of Planning

Felso, V., Jain, Y. R., Lieder, F.

CogSci 2020, July 2020 (poster) Accepted

Abstract
Which information is worth considering depends on how much effort it would take to acquire and process it. From this perspective people’s tendency to neglect considering the long-term consequences of their actions (present bias) might reflect that looking further into the future becomes increasingly more effortful. In this work, we introduce and validate the use of Bayesian Inverse Reinforcement Learning (BIRL) for measuring individual differences in the subjective costs of planning. We extend the resource-rational model of human planning introduced by Callaway, Lieder, et al. (2018) by parameterizing the cost of planning. Using BIRL, we show that increased subjective cost for considering future outcomes may be associated with both the present bias and acting without planning. Our results highlight testing the causal effects of the cost of planning on both present bias and mental effort avoidance as a promising direction for future work.

re

[BibTex]

[BibTex]


Learning and Tracking the {3D} Body Shape of Freely Moving Infants from {RGB-D} sequences
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 42(10):2540-2551, 2020 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

ps

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection
Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection

Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., Fischer, P.

Adv. Mat., 32(2001114), May 2020 (article)

Abstract
The application of nanoparticles for drug or gene delivery promises benefits in the form of single‐cell‐specific therapeutic and diagnostic capabilities. Many methods of cell transfection rely on unspecific means to increase the transport of genetic material into cells. Targeted transport is in principle possible with magnetically propelled micromotors, which allow responsive nanoscale actuation and delivery. However, many commonly used magnetic materials (e.g., Ni and Co) are not biocompatible, possess weak magnetic remanence (Fe3O4), or cannot be implemented in nanofabrication schemes (NdFeB). Here, it is demonstrated that co‐depositing iron (Fe) and platinum (Pt) followed by one single annealing step, without the need for solution processing, yields ferromagnetic FePt nanomotors that are noncytotoxic, biocompatible, and possess a remanence and magnetization that rival those of permanent NdFeB micromagnets. Active cell targeting and magnetic transfection of lung carcinoma cells are demonstrated using gradient‐free rotating millitesla fields to drive the FePt nanopropellers. The carcinoma cells express enhanced green fluorescent protein after internalization and cell viability is unaffected by the presence of the FePt nanopropellers. The results establish FePt, prepared in the L10 phase, as a promising magnetic material for biomedical applications with superior magnetic performance, especially for micro‐ and nanodevices.

pf mms

link (url) DOI [BibTex]


Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles
Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles

Singh, D., Domínguez, A., Choudhury, U., Kottapalli, S., Popescu, M., Dietrich, S., Fischer, P.

Nature Communications, 11(2210), May 2020 (article)

Abstract
Symmetry breaking and the emergence of self-organized patterns is the hallmark of com- plexity. Here, we demonstrate that a sessile drop, containing titania powder particles with negligible self-propulsion, exhibits a transition to collective motion leading to self-organized flow patterns. This phenomenology emerges through a novel mechanism involving the interplay between the chemical activity of the photocatalytic particles, which induces Mar- angoni stresses at the liquid–liquid interface, and the geometrical confinement provided by the drop. The response of the interface to the chemical activity of the particles is the source of a significantly amplified hydrodynamic flow within the drop, which moves the particles. Furthermore, in ensembles of such active drops long-ranged ordering of the flow patterns within the drops is observed. We show that the ordering is dictated by a chemical com- munication between drops, i.e., an alignment of the flow patterns is induced by the gradients of the chemicals emanating from the active particles, rather than by hydrodynamic interactions.

pf icm

link (url) DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

DOI [BibTex]

DOI [BibTex]


no image
Automatic Discovery of Interpretable Planning Strategies

Skirzyński, J., Becker, F., Lieder, F.

May 2020 (article) Submitted

Abstract
When making decisions, people often overlook critical information or are overly swayed by irrelevant information. A common approach to mitigate these biases is to provide decisionmakers, especially professionals such as medical doctors, with decision aids, such as decision trees and flowcharts. Designing effective decision aids is a difficult problem. We propose that recently developed reinforcement learning methods for discovering clever heuristics for good decision-making can be partially leveraged to assist human experts in this design process. One of the biggest remaining obstacles to leveraging the aforementioned methods for improving human decision-making is that the policies they learn are opaque to people. To solve this problem, we introduce AI-Interpret: a general method for transforming idiosyncratic policies into simple and interpretable descriptions. Our algorithm combines recent advances in imitation learning and program induction with a new clustering method for identifying a large subset of demonstrations that can be accurately described by a simple, high-performing decision rule. We evaluate our new AI-Interpret algorithm and employ it to translate information-acquisition policies discovered through metalevel reinforcement learning. The results of three large behavioral experiments showed that the provision of decision rules as flowcharts significantly improved people’s planning strategies and decisions across three different classes of sequential decision problems. Furthermore, a series of ablation studies confirmed that our AI-Interpret algorithm was critical to the discovery of interpretable decision rules and that it is ready to be applied to other reinforcement learning problems. We conclude that the methods and findings presented in this article are an important step towards leveraging automatic strategy discovery to improve human decision-making.

re

Automatic Discovery of Interpretable Planning Strategies The code for our algorithm and the experiments is available [BibTex]


VP above or below? A new perspective on the story of the virtual point
VP above or below? A new perspective on the story of the virtual point

Drama, Ö., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
The spring inverted pendulum model with an extended trunk (TSLIP) is widely used to investigate the postural stability in bipedal locomotion [1, 2]. The challenge of the model is to define a hip torque that generates feasible gait patterns while stabilizing the floating trunk. The virtual point (VP) method is proposed as a simplified solution, where the hip torque is coupled to the passive compliant leg force via a virtual point. This geometric coupling is based on the assumption that the instantaneous ground reaction forces of the stance phase (GRF) intersect at a single virtual point.

dlg

Poster Abstract link (url) [BibTex]

Poster Abstract link (url) [BibTex]


Viscous Damping in Legged Locomotion
Viscous Damping in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
Damping likely plays an essential role in legged animal locomotion, but remains an insufficiently understood mechanism. Intrinsic damping muscle forces can potentially add to the joint torque output during unexpected impacts, stabilise movements, convert the system’s energy, and reject unexpected perturbations.

dlg

Abstract Poster link (url) [BibTex]

Abstract Poster link (url) [BibTex]


How Quadrupeds Benefit from Lower Leg Passive Elasticity
How Quadrupeds Benefit from Lower Leg Passive Elasticity

Ruppert, F., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
Recently developed and fully actuated, legged robots start showing exciting locomotion capabilities, but rely heavily on high-power actuators, high-frequency sensors, and complex locomotion controllers. The engineering solutions implemented in these legged robots are much different compared to animals. Vertebrate animals share magnitudes slower neurocontrol signal velocities [1] compared to their robot counterparts. Also, animals feature a plethora of cascaded and underactuated passive elastic structures [2].

dlg

Abstract Poster link (url) [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

pdf DOI poster link (url) DOI [BibTex]

pdf DOI poster link (url) DOI [BibTex]


Spectrally selective and highly-sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film
Spectrally selective and highly-sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film

Arora, K., Singh, D., Fischer, P., Kumar, M.

Adv. Opt. Mat., March 2020 (article)

Abstract
Traditional photodetectors generally show a unipolar photocurrent response when illuminated with light of wavelength equal or shorter than the optical bandgap. Here, we report that a thin film of gallium oxide (GO) decorated with plasmonic nanoparticles, surprisingly, exhibits a change in the polarity of the photocurrent for different UV bands. Silver (Ag) nanoparticles are vacuum-deposited onto β-Ga2O3 and the AgNP@GO thin films show a record responsivity of 250 A/W, which significantly outperforms bare GO planar photodetectors. The photoresponsivity reverses sign from +157 µA/W in the UV-C band under unbiased operation to -353 µA/W in the UV-A band. The current reversal is rationalized by considering the charge dynamics stemming from hot electrons generated when the incident light excites a local surface plasmon resonance (LSPR) in the Ag nanoparticles. The Ag nanoparticles improve the external quantum efficiency and detectivity by nearly one order of magnitude with high values of 1.2×105 and 3.4×1014 Jones, respectively. This plasmon-enhanced solar blind GO detector allows UV regions to be spectrally distinguished, which is useful for the development of sensitive dynamic imaging photodetectors.

pf

link (url) DOI [BibTex]


no image
Advancing Rational Analysis to the Algorithmic Level

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E27, March 2020 (article)

Abstract
The commentaries raised questions about normativity, human rationality, cognitive architectures, cognitive constraints, and the scope or resource rational analysis (RRA). We respond to these questions and clarify that RRA is a methodological advance that extends the scope of rational modeling to understanding cognitive processes, why they differ between people, why they change over time, and how they could be improved.

re

Advancing rational analysis to the algorithmic level DOI [BibTex]

Advancing rational analysis to the algorithmic level DOI [BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Drama, Ö., Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 15(3), March 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

Youtube Video link (url) DOI [BibTex]

Youtube Video link (url) DOI [BibTex]


no image
Learning to Overexert Cognitive Control in a Stroop Task

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

Febuary 2020, Laura Bustamante and Falk Lieder contributed equally to this publication. (article) In revision

Abstract
How do people learn when to allocate how much cognitive control to which task? According to the Learned Value of Control (LVOC) model, people learn to predict the value of alternative control allocations from features of a given situation. This suggests that people may generalize the value of control learned in one situation to other situations with shared features, even when the demands for cognitive control are different. This makes the intriguing prediction that what a person learned in one setting could, under some circumstances, cause them to misestimate the need for, and potentially over-exert control in another setting, even if this harms their performance. To test this prediction, we had participants perform a novel variant of the Stroop task in which, on each trial, they could choose to either name the color (more control-demanding) or read the word (more automatic). However only one of these tasks was rewarded, it changed from trial to trial, and could be predicted by one or more of the stimulus features (the color and/or the word). Participants first learned colors that predicted the rewarded task. Then they learned words that predicted the rewarded task. In the third part of the experiment, we tested how these learned feature associations transferred to novel stimuli with some overlapping features. The stimulus-task-reward associations were designed so that for certain combinations of stimuli the transfer of learned feature associations would incorrectly predict that more highly rewarded task would be color naming, which would require the exertion of control, even though the actually rewarded task was word reading and therefore did not require the engagement of control. Our results demonstrated that participants over-exerted control for these stimuli, providing support for the feature-based learning mechanism described by the LVOC model.

re

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]


Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds
Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds

Kamska, V., Daley, M., Badri-Spröwitz, A.

Society of Integrative & Comparative Biology Annual Meeting, January 2020 (poster)

dlg

[BibTex]

[BibTex]


Investigating photoresponsivity of graphene-silver hybrid nanomaterials in the ultraviolet
Investigating photoresponsivity of graphene-silver hybrid nanomaterials in the ultraviolet

Deshpande, P., Suri, P., Jeong, H., Fischer, P., Ghosh, A., Ghosh, G.

J. Chem. Phys., 152, pages: 044709, January 2020 (article)

Abstract
There have been several reports of plasmonically enhanced graphene photodetectors in the visible and the near infrared regime but rarely in the ultraviolet. In a previous work, we have reported that a graphene-silver hybrid structure shows a high photoresponsivity of 13 A/W at 270 nm. Here, we consider the likely mechanisms that underlie this strong photoresponse. We investigate the role of the plasmonic layer and examine the response using silver and gold nanoparticles of similar dimensions and spatial arrangement. The effect on local doping, strain, and absorption properties of the hybrid is also probed by photocurrent measurements and Raman and UV-visible spectroscopy. We find that the local doping from the silver nanoparticles is stronger than that from gold and correlates with a measured photosensitivity that is larger in devices with a higher contact area between the plasmonic nanomaterials and the graphene layer.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate

Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.

Annals of Biomed. Eng., 48, pages: 437-446, January 2020 (article)

Abstract
Transurethral resection of the prostate (TURP) is a minimally invasive endoscopic procedure that requires experience and skill of the surgeon. To permit surgical training under realistic conditions we report a novel phantom of the human prostate that can be resected with TURP. The phantom mirrors the anatomy and haptic properties of the gland and permits quantitative evaluation of important surgical performance indicators. Mixtures of soft materials are engineered to mimic the physical properties of the human tissue, including the mechanical strength, the electrical and thermal conductivity, and the appearance under an endoscope. Electrocautery resection of the phantom closely resembles the procedure on human tissue. Ultrasound contrast agent was applied to the central zone, which was not detectable by the surgeon during the surgery but showed high contrast when imaged after the surgery, to serve as a label for the quantitative evaluation of the surgery. Quantitative criteria for performance assessment are established and evaluated by automated image analysis. We present the workflow of a surgical simulation on a prostate phantom followed by quantitative evaluation of the surgical performance. Surgery on the phantom is useful for medical training, and enables the development and testing of endoscopic and minimally invasive surgical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Interactive Materials – Drivers of Future Robotic Systems
Interactive Materials – Drivers of Future Robotic Systems

Fischer, P.

Adv. Mat., January 2020 (article)

Abstract
A robot senses its environment, processes the sensory information, acts in response to these inputs, and possibly communicates with the outside world. Robots generally achieve these tasks with electronics-based hardware or by receiving inputs from some external hardware. In contrast, simple microorganisms can autonomously perceive, act, and communicate via purely physicochemical processes in soft material systems. A key property of biological systems is that they are built from energy-consuming ‘active’ units. Exciting developments in material science show that even very simple artificial active building blocks can show surprisingly rich emergent behaviors. Active non-equilibrium systems are therefore predicted to play an essential role to realize interactive materials. A major challenge is to find robust ways to couple and integrate the energy-consuming building blocks to the mechanical structure of the material. However, success in this endeavor will lead to a new generation of sophisticated micro- and soft-robotic systems that can operate autonomously.

pf

link (url) DOI [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Toward a Formal Theory of Proactivity
Toward a Formal Theory of Proactivity

Lieder, F., Iwama, G.

January 2020 (article) Submitted

Abstract
Beyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue their own goals. But the extent to which they leverage this capacity varies widely across people and situations. The goal of this article is to make the mechanisms and variability of proactivity more amenable to rigorous experiments and computational modeling. We proceed in three steps. First, we develop and validate a mathematically precise behavioral measure of proactivity and reactivity that can be applied across a wide range of experimental paradigms. Second, we propose a formal definition of proactivity and reactivity, and develop a computational model of proactivity in the AX Continuous Performance Task (AX-CPT). Third, we develop and test a computational-level theory of meta-control over proactivity in the AX-CPT that identifies three distinct meta-decision-making problems: intention setting, resolving response conflict between intentions and automaticity, and deciding whether to recall context and intentions into working memory. People's response frequencies in the AX-CPT were remarkably well captured by a mixture between the predictions of our models of proactive and reactive control. Empirical data from an experiment varying the incentives and contextual load of an AX-CPT confirmed the predictions of our meta-control model of individual differences in proactivity. Our results suggest that proactivity can be understood in terms of computational models of meta-control. Our model makes additional empirically testable predictions. Future work will extend our models from proactive control in the AX-CPT to proactive goal creation and goal pursuit in the real world.

re

Toward a formal theory of proactivity DOI Project Page [BibTex]


Self-supervised motion deblurring
Self-supervised motion deblurring

Liu, P., Janai, J., Pollefeys, M., Sattler, T., Geiger, A.

IEEE Robotics and Automation Letters, 2020 (article)

Abstract
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However, obtaining training data with corresponding sharp and blurry image pairs can be difficult. In this paper, we present a differentiable reblur model for self-supervised motion deblurring, which enables the network to learn from real-world blurry image sequences without relying on sharp images for supervision. Our key insight is that motion cues obtained from consecutive images yield sufficient information to inform the deblurring task. We therefore formulate deblurring as an inverse rendering problem, taking into account the physical image formation process: we first predict two deblurred images from which we estimate the corresponding optical flow. Using these predictions, we re-render the blurred images and minimize the difference with respect to the original blurry inputs. We use both synthetic and real dataset for experimental evaluations. Our experiments demonstrate that self-supervised single image deblurring is really feasible and leads to visually compelling results.

avg

pdf Project Page Blog [BibTex]

pdf Project Page Blog [BibTex]


Learning Neural Light Transport
Learning Neural Light Transport

Sanzenbacher, P., Mescheder, L., Geiger, A.

Arxiv, 2020 (article)

Abstract
In recent years, deep generative models have gained significance due to their ability to synthesize natural-looking images with applications ranging from virtual reality to data augmentation for training computer vision models. While existing models are able to faithfully learn the image distribution of the training set, they often lack controllability as they operate in 2D pixel space and do not model the physical image formation process. In this work, we investigate the importance of 3D reasoning for photorealistic rendering. We present an approach for learning light transport in static and dynamic 3D scenes using a neural network with the goal of predicting photorealistic images. In contrast to existing approaches that operate in the 2D image domain, our approach reasons in both 3D and 2D space, thus enabling global illumination effects and manipulation of 3D scene geometry. Experimentally, we find that our model is able to produce photorealistic renderings of static and dynamic scenes. Moreover, it compares favorably to baselines which combine path tracing and image denoising at the same computational budget.

avg

arxiv [BibTex]


Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study
Postural Stability in Human Running with Step-down Perturbations: An Experimental and Numerical Study

Oezge Drama, , Johanna Vielemeyer, , Alexander Badri-Spröwitz, , Müller, R.

2020 (article) In revision

Abstract
Postural stability is one of the most crucial elements in bipedal locomotion. Bipeds are dynamically unstable and need to maintain their trunk upright against the rotations induced by the ground reaction forces (GRFs), especially when running. Gait studies report that the GRF vectors focus around a virtual point above the center of mass (VPA), while the trunk moves forward in pitch axis during the stance phase of human running. However, a recent simulation study suggests that a virtual point below the center of mass (VPB) might be present in human running, since a VPA yields backward trunk rotation during the stance phase. In this work, we perform a gait analysis to investigate the existence and location of the VP in human running at 5 m s−1, and support our findings numerically using the spring-loaded inverted pendulum model with a trunk (TSLIP). We extend our analysis to include perturbations in terrain height (visible and camouflaged), and investigate the response of the VP mechanism to step-down perturbations both experimentally and numerically. Our experimental results show that the human running gait displays a VPB of ≈ −30 cm and a forward trunk motion during the stance phase. The camouflaged step-down perturbations affect the location of the VPB. Our simulation results suggest that the VPB is able to encounter the step-down perturbations and bring the system back to its initial equilibrium state.

dlg

link (url) [BibTex]

link (url) [BibTex]

2010


Molecular QED of coherent and incoherent sum-frequency and second-harmonic generation in chiral liquids in the presence of a static electric field
Molecular QED of coherent and incoherent sum-frequency and second-harmonic generation in chiral liquids in the presence of a static electric field

Fischer, P., Salam, A.

MOLECULAR PHYSICS, 108(14):1857-1868, 2010 (article)

Abstract
Coherent second-order nonlinear optical processes are symmetry forbidden in centrosymmetric environments in the electric-dipole approximation. In liquids that contain chiral molecules, however, and which therefore lack mirror image symmetry, coherent sum-frequency generation is possible, whereas second-harmonic generation remains forbidden. Here we apply the theory of molecular quantum electrodynamics to the calculation of the matrix element, transition rate, and integrated signal intensity for sum-frequency and second-harmonic generation taking place in a chiral liquid in the presence and absence of a static electric field, to examine which coherent and incoherent processes exist in the electric-dipole approximation in liquids. Third- and fourth-order time-dependent perturbation theory is employed in combination with single-sided Feynman diagrams to evaluate two contributions arising from static field-free and field-induced processes. It is found that, in addition to the coherent term, an incoherent process exists for sum-frequency generation in liquids. Surprisingly, in the case of dc-field-induced second-harmonic generation, the incoherent contribution is found to always vanish for isotropic chiral liquids even though hyper-Rayleigh second-harmonic generation and electric-field-induced second-harmonic generation are both independently symmetry allowed in any liquid.

pf

DOI [BibTex]

2008


Voltage-Controllable Magnetic Composite Based on Multifunctional Polyethylene Microparticles
Voltage-Controllable Magnetic Composite Based on Multifunctional Polyethylene Microparticles

Ghosh, A., Sheridon, N. K., Fischer, P.

SMALL, 4(11):1956-1958, 2008 (article)

pf

DOI [BibTex]

2008


2007


Frequency-domain displacement sensing with a fiber ring-resonator containing a variable gap
Frequency-domain displacement sensing with a fiber ring-resonator containing a variable gap

Vollmer, F., Fischer, P.

SENSORS AND ACTUATORS A-PHYSICAL, 134(2):410-413, 2007 (article)

Abstract
Ring-resonators are in general not amenable to strain-free (non-contact) displacement measurements. We show that this limitation may be overcome if the ring-resonator, here a fiber-loop, is designed to contain a gap, such that the light traverses a free-space part between two aligned waveguide ends. Displacements are determined with nanometer sensitivity by measuring the associated changes in the resonance frequencies. Miniaturization should increase the sensitivity of the ring-resonator interferometer. Ring geometries that contain an optical circulator can be used to profile reflective samples. (c) 2006 Elsevier B.V. All rights reserved.

pf

DOI [BibTex]

2007


DOI [BibTex]


Observation of the Faraday effect via beam deflection in a longitudinal magnetic field
Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

Ghosh, A., Hill, W., Fischer, P.

PHYSICAL REVIEW A, 76(5), 2007 (article)

Abstract
We show that magnetic-field-induced circular differential deflection of light can be observed in reflection or refraction at a single interface. The difference in the reflection or refraction angles between the two circular polarization components is a function of the magnetic-field strength and the Verdet constant, and permits the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction. Deflection measurements do not suffer from n-pi ambiguities and are shown to be another means to map magnetic fields with high axial resolution, or to determine the sign and magnitude of magnetic-field pulses in a single measurement.

pf

DOI [BibTex]


Circular differential double diffraction in chiral media
Circular differential double diffraction in chiral media

Ghosh, A., Fazal, F. M., Fischer, P.

OPTICS LETTERS, 32(13):1836-1838, 2007 (article)

Abstract
In an optically active liquid the diffraction angle depends on the circular polarization state of the incident light beam. We report the observation of circular differential diffraction in an isotropic chiral medium, and we demonstrate that double diffraction is an alternate means to determine the handedness (enantiomeric excess) of a solution. (c) 2007 Optical Society of America.

pf

DOI [BibTex]

DOI [BibTex]

2005


Nonlinear optical spectroscopy of chiral molecules
Nonlinear optical spectroscopy of chiral molecules

Fischer, P., Hache, F.

CHIRALITY, 17(8):421-437, 2005 (article)

Abstract
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality: They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest. (C) 2005 Wiley-Liss, Inc.

pf

DOI [BibTex]

2005


DOI [BibTex]


Negative refraction at optical frequencies in nonmagnetic two-component molecular media
Negative refraction at optical frequencies in nonmagnetic two-component molecular media

Chen, Y., Fischer, P., Wise, F.

PHYSICAL REVIEW LETTERS, 95(6), 2005 (article)

Abstract
There is significant motivation to develop media with negative refractive indices at optical frequencies, but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies. We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit a negative refractive index. A negative index is possible even when the real parts of both the permittivity and permeability are positive. This surprising result provides a route to isotropic negative-index media at optical frequencies.

pf

DOI [BibTex]

DOI [BibTex]