Header logo is


2007


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

2007


PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA

Waldert, S., Bensch, M., Bogdan, M., Rosenstiel, W., Schölkopf, B., Lowery, C., Eswaran, H., Preissl, H.

IEEE Transactions on Biomedical Engineering, 54(10):1867-1874, September 2007 (article)

Abstract
Electrophysiological signals of the developing fetal brain and heart can be investigated by fetal magnetoencephalography (fMEG). During such investigations, the fetal heart activity and that of the mother should be monitored continuously to provide an important indication of current well-being. Due to physical constraints of an fMEG system, it is not possible to use clinically established heart monitors for this purpose. Considering this constraint, we developed a real-time heart monitoring system for biomagnetic measurements and showed its reliability and applicability in research and for clinical examinations. The developed system consists of real-time access to fMEG data, an algorithm based on Independent Component Analysis (ICA), and a graphical user interface (GUI). The algorithm extracts the current fetal and maternal heart signal from a noisy and artifact-contaminated data stream in real-time and is able to adapt automatically to continuously varying environmental parameters. This algorithm has been na med Adaptive Real-time ICA (ARICA) and is applicable to real-time artifact removal as well as to related blind signal separation problems.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Feature Selection for Trouble Shooting in Complex Assembly Lines

Pfingsten, T., Herrmann, D., Schnitzler, T., Feustel, A., Schölkopf, B.

IEEE Transactions on Automation Science and Engineering, 4(3):465-469, July 2007 (article)

Abstract
The final properties of sophisticated products can be affected by many unapparent dependencies within the manufacturing process, and the products’ integrity can often only be checked in a final measurement. Troubleshooting can therefore be very tedious if not impossible in large assembly lines. In this paper we show that Feature Selection is an efficient tool for serial-grouped lines to reveal causes for irregularities in product attributes. We compare the performance of several methods for Feature Selection on real-world problems in mass-production of semiconductor devices. Note to Practitioners— We present a data based procedure to localize flaws in large production lines: using the results of final quality inspections and information about which machines processed which batches, we are able to identify machines which cause low yield.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Gene selection via the BAHSIC family of algorithms

Song, L., Bedo, J., Borgwardt, K., Gretton, A., Smola, A.

Bioinformatics, 23(13: ISMB/ECCB 2007 Conference Proceedings):i490-i498, July 2007 (article)

Abstract
Motivation: Identifying significant genes among thousands of sequences on a microarray is a central challenge for cancer research in bioinformatics. The ultimate goal is to detect the genes that are involved in disease outbreak and progression. A multitude of methods have been proposed for this task of feature selection, yet the selected gene lists differ greatly between different methods. To accomplish biologically meaningful gene selection from microarray data, we have to understand the theoretical connections and the differences between these methods. In this article, we define a kernel-based framework for feature selection based on the Hilbert–Schmidt independence criterion and backward elimination, called BAHSIC. We show that several well-known feature selectors are instances of BAHSIC, thereby clarifying their relationship. Furthermore, by choosing a different kernel, BAHSIC allows us to easily define novel feature selection algorithms. As a further advantage, feature selection via BAHSIC works directly on multiclass problems. Results: In a broad experimental evaluation, the members of the BAHSIC family reach high levels of accuracy and robustness when compared to other feature selection techniques. Experiments show that features selected with a linear kernel provide the best classification performance in general, but if strong non-linearities are present in the data then non-linear kernels can be more suitable.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phenotyping of Chondrocytes In Vivo and In Vitro Using cDNA Array Technology

Zien, A., Gebhard, P., Fundel, K., Aigner, T.

Clinical Orthopaedics and Related Research, 460, pages: 226-233, July 2007 (article)

Abstract
The cDNA array technology is a powerful tool to analyze a high number of genes in parallel. We investigated whether large-scale gene expression analysis allows clustering and identification of cellular phenotypes of chondrocytes in different in vivo and in vitro conditions. In 100% of cases, clustering analysis distinguished between in vivo and in vitro samples, suggesting fundamental differences in chondrocytes in situ and in vitro regardless of the culture conditions or disease status. It also allowed us to differentiate between healthy and osteoarthritic cartilage. The clustering also revealed the relative importance of the investigated culturing conditions (stimulation agent, stimulation time, bead/monolayer). We augmented the cluster analysis with a statistical search for genes showing differential expression. The identified genes provided hints to the molecular basis of the differences between the sample classes. Our approach shows the power of modern bioinformatic algorithms for understanding and class ifying chondrocytic phenotypes in vivo and in vitro. Although it does not generate new experimental data per se, it provides valuable information regarding the biology of chondrocytes and may provide tools for diagnosing and staging the osteoarthritic disease process.

ei

DOI [BibTex]

DOI [BibTex]


no image
Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana

Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T., Fu, G., Hinds, D., Chen, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Rätsch, G., Ecker, J., Weigel, D.

Science, 317(5836):338-342, July 2007 (article)

Abstract
The genomes of individuals from the same species vary in sequence as a result of different evolutionary processes. To examine the patterns of, and the forces shaping, sequence variation in Arabidopsis thaliana, we performed high-density array resequencing of 20 diverse strains (accessions). More than 1 million nonredundant single-nucleotide polymorphisms (SNPs) were identified at moderate false discovery rates (FDRs), and ~4% of the genome was identified as being highly dissimilar or deleted relative to the reference genome sequence. Patterns of polymorphism are highly nonrandom among gene families, with genes mediating interaction with the biotic environment having exceptional polymorphism levels. At the chromosomal scale, regional variation in polymorphism was readily apparent. A scan for recent selective sweeps revealed several candidate regions, including a notable example in which almost all variation was removed in a 500-kilobase window. Analyzing the polymorphisms we describe in larger sets of accessions will enable a detailed understanding of forces shaping population-wide sequence variation in A. thaliana.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Graph Laplacians and their Convergence on Random Neighborhood Graphs

Hein, M., Audibert, J., von Luxburg, U.

Journal of Machine Learning Research, 8, pages: 1325-1370, June 2007 (article)

Abstract
Given a sample from a probability measure with support on a submanifold in Euclidean space one can construct a neighborhood graph which can be seen as an approximation of the submanifold. The graph Laplacian of such a graph is used in several machine learning methods like semi-supervised learning, dimensionality reduction and clustering. In this paper we determine the pointwise limit of three different graph Laplacians used in the literature as the sample size increases and the neighborhood size approaches zero. We show that for a uniform measure on the submanifold all graph Laplacians have the same limit up to constants. However in the case of a non-uniform measure on the submanifold only the so called random walk graph Laplacian converges to the weighted Laplace-Beltrami operator.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Bayesian Reconstruction of the Density of States

Habeck, M.

Physical Review Letters, 98(20, 200601):1-4, May 2007 (article)

Abstract
A Bayesian framework is developed to reconstruct the density of states from multiple canonical simulations. The framework encompasses the histogram reweighting method of Ferrenberg and Swendsen. The new approach applies to nonparametric as well as parametric models and does not require simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of states and of derived thermodynamic quantities.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
PALMA: mRNA to Genome Alignments using Large Margin Algorithms

Schulze, U., Hepp, B., Ong, C., Rätsch, G.

Bioinformatics, 23(15):1892-1900, May 2007 (article)

Abstract
Motivation: Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. Results: We present a novel approach based on large margin learning that combines accurate plice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm – called PALMA – tunes the parameters of the model such that true alignments score higher than other alignments. We study the accuracy of alignments of mRNAs containing artificially generated micro-exons to genomic DNA. In a carefully designed experiment, we show that our algorithm accurately identifies the intron boundaries as well as boundaries of the optimal local alignment. It outperforms all other methods: for 5702 artificially shortened EST sequences from C. elegans and human it correctly identifies the intron boundaries in all except two cases. The best other method is a recently proposed method called exalin which misaligns 37 of the sequences. Our method also demonstrates robustness to mutations, insertions and deletions, retaining accuracy even at high noise levels. Availability: Datasets for training, evaluation and testing, additional results and a stand-alone alignment tool implemented in C++ and python are available at http://www.fml.mpg.de/raetsch/projects/palma.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

Neural Computation, 19(5):1155-1178, March 2007 (article)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason for ignoring this possibilty. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., Schölkopf, B.

PLoS Computational Biology, 3(2, e20):0313-0322, February 2007 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Statistical Consistency of Kernel Canonical Correlation Analysis

Fukumizu, K., Bach, F., Gretton, A.

Journal of Machine Learning Research, 8, pages: 361-383, February 2007 (article)

Abstract
While kernel canonical correlation analysis (CCA) has been applied in many contexts, the convergence of finite sample estimates of the associated functions to their population counterparts has not yet been established. This paper gives a mathematical proof of the statistical convergence of kernel CCA, providing a theoretical justification for the method. The proof uses covariance operators defined on reproducing kernel Hilbert spaces, and analyzes the convergence of their empirical estimates of finite rank to their population counterparts, which can have infinite rank. The result also gives a sufficient condition for convergence on the regularization coefficient involved in kernel CCA: this should decrease as n^{-1/3}, where n is the number of data.

ei

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the pedestal effect

Henning, G., Wichmann, F.

Journal of Vision, 7(1:3):1-15, January 2007 (article)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when it is added to a masking or pedestal grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noiseVnoise from which a 1.5-octave band centered on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and the pedestal. We speculate that the spatial-frequency components of the notched noise above and below the spatial frequency of the signal and the pedestal prevent ‘‘off-frequency looking,’’ that is, prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and the pedestal. Thus, the pedestal or dipper effect measured without notched noise appears not to be a characteristic of individual spatial-frequency-tuned channels.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Cue Combination and the Effect of Horizontal Disparity and Perspective on Stereoacuity

Zalevski, AM., Henning, GB., Hill, NJ.

Spatial Vision, 20(1):107-138, January 2007 (article)

Abstract
Relative depth judgments of vertical lines based on horizontal disparity deteriorate enormously when the lines form part of closed configurations (Westheimer, 1979). In studies showing this effect, perspective was not manipulated and thus produced inconsistency between horizontal disparity and perspective. We show that stereoacuity improves dramatically when perspective and horizontal disparity are made consistent. Observers appear to use unhelpful perspective cues in judging the relative depth of the vertical sides of rectangles in a way not incompatible with a form of cue weighting. However, 95% confidence intervals for the weights derived for cues usually exceed the a-priori [0-1] range.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]

2006


no image
Structure validation of the Josephin domain of ataxin-3: Conclusive evidence for an open conformation

Nicastro, G., Habeck, M., Masino, L., Svergun, DI., Pastore, A.

Journal of Biomolecular NMR, 36(4):267-277, December 2006 (article)

Abstract
The availability of new and fast tools in structure determination has led to a more than exponential growth of the number of structures solved per year. It is therefore increasingly essential to assess the accuracy of the new structures by reliable approaches able to assist validation. Here, we discuss a specific example in which the use of different complementary techniques, which include Bayesian methods and small angle scattering, resulted essential for validating the two currently available structures of the Josephin domain of ataxin-3, a protein involved in the ubiquitin/proteasome pathway and responsible for neurodegenerative spinocerebellar ataxia of type 3. Taken together, our results demonstrate that only one of the two structures is compatible with the experimental information. Based on the high precision of our refined structure, we show that Josephin contains an open cleft which could be directly implicated in the interaction with polyubiquitin chains and other partners.

ei

Web DOI [BibTex]

2006


Web DOI [BibTex]


no image
A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression

Franz, M., Schölkopf, B.

Neural Computation, 18(12):3097-3118, December 2006 (article)

Abstract
Volterra and Wiener series are perhaps the best understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number of terms that have to be estimated. We show that Volterra and Wiener series can be represented implicitly as elements of a reproducing kernel Hilbert space by utilizing polynomial kernels. The estimation complexity of the implicit representation is linear in the input dimensionality and independent of the degree of nonlinearity. Experiments show performance advantages in terms of convergence, interpretability, and system sizes that can be handled.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Statistical Analysis of Slow Crack Growth Experiments

Pfingsten, T., Glien, K.

Journal of the European Ceramic Society, 26(15):3061-3065, November 2006 (article)

Abstract
A common approach for the determination of Slow Crack Growth (SCG) parameters are the static and dynamic loading method. Since materials with small Weibull module show a large variability in strength, a correct statistical analysis of the data is indispensable. In this work we propose the use of the Maximum Likelihood method and a Baysian analysis, which, in contrast to the standard procedures, take into account that failure strengths are Weibull distributed. The analysis provides estimates for the SCG parameters, the Weibull module, and the corresponding confidence intervals and overcomes the necessity of manual differentiation between inert and fatigue strength data. We compare the methods to a Least Squares approach, which can be considered the standard procedure. The results for dynamic loading data from the glass sealing of MEMS devices show that the assumptions inherent to the standard approach lead to significantly different estimates.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Mining frequent stem patterns from unaligned RNA sequences

Hamada, M., Tsuda, K., Kudo, T., Kin, T., Asai, K.

Bioinformatics, 22(20):2480-2487, October 2006 (article)

Abstract
Motivation: In detection of non-coding RNAs, it is often necessary to identify the secondary structure motifs from a set of putative RNA sequences. Most of the existing algorithms aim to provide the best motif or few good motifs, but biologists often need to inspect all the possible motifs thoroughly. Results: Our method RNAmine employs a graph theoretic representation of RNA sequences, and detects all the possible motifs exhaustively using a graph mining algorithm. The motif detection problem boils down to finding frequently appearing patterns in a set of directed and labeled graphs. In the tasks of common secondary structure prediction and local motif detection from long sequences, our method performed favorably both in accuracy and in efficiency with the state-of-the-art methods such as CMFinder.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Large-Scale Gene Expression Profiling Reveals Major Pathogenetic Pathways of Cartilage Degeneration in Osteoarthritis

Aigner, T., Fundel, K., Saas, J., Gebhard, P., Haag, J., Weiss, T., Zien, A., Obermayr, F., Zimmer, R., Bartnik, E.

Arthritis and Rheumatism, 54(11):3533-3544, October 2006 (article)

Abstract
Objective. Despite many research efforts in recent decades, the major pathogenetic mechanisms of osteo- arthritis (OA), including gene alterations occurring during OA cartilage degeneration, are poorly under- stood, and there is no disease-modifying treatment approach. The present study was therefore initiated in order to identify differentially expressed disease-related genes and potential therapeutic targets. Methods. This investigation consisted of a large gene expression profiling study performed based on 78 normal and disease samples, using a custom-made complementar y DNA array covering >4,000 genes. Results. Many differentially expressed genes were identified, including the expected up-regulation of ana- bolic and catabolic matrix genes. In particular, the down-regulation of important oxidative defense genes, i.e., the genes for superoxide dismutases 2 and 3 and glutathione peroxidase 3, was prominent. This indicates that continuous oxidative stress to the cells and the matrix is one major underlying pathogenetic mecha- nism in OA. Also, genes that are involved in the phenot ypic stabilit y of cells, a feature that is greatly reduced in OA cartilage, appeared to be suppressed. Conclusion. Our findings provide a reference data set on gene alterations in OA cartilage and, importantly, indicate major mechanisms underlying central cell bio- logic alterations that occur during the OA disease process. These results identify molecular targets that can be further investigated in the search for therapeutic interventions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Implicit Surface Modelling with a Globally Regularised Basis of Compact Support

Walder, C., Schölkopf, B., Chapelle, O.

Computer Graphics Forum, 25(3):635-644, September 2006 (article)

Abstract
We consider the problem of constructing a globally smooth analytic function that represents a surface implicitly by way of its zero set, given sample points with surface normal vectors. The contributions of the paper include a novel means of regularising multi-scale compactly supported basis functions that leads to the desirable interpolation properties previously only associated with fully supported bases. We also provide a regularisation framework for simpler and more direct treatment of surface normals, along with a corresponding generalisation of the representer theorem lying at the core of kernel-based machine learning methods. We demonstrate the techniques on 3D problems of up to 14 million data points, as well as 4D time series data and four-dimensional interpolation between three-dimensional shapes.

ei

PDF GZIP DOI [BibTex]


no image
An Online Support Vector Machine for Abnormal Events Detection

Davy, M., Desobry, F., Gretton, A., Doncarli, C.

Signal Processing, 86(8):2009-2025, August 2006 (article)

Abstract
The ability to detect online abnormal events in signals is essential in many real-world Signal Processing applications. Previous algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. Corresponding implementation relies on maximum likelihood or on Bayes estimation theory with generally excellent performance. However, there are numerous cases where a robust and tractable model cannot be obtained, and model-free approaches need to be considered. In this paper, we investigate a machine learning, descriptor-based approach that does not require an explicit descriptors statistical model, based on Support Vector novelty detection. A sequential optimization algorithm is introduced. Theoretical considerations as well as simulations on real signals demonstrate its practical efficiency.

ei

PDF PostScript PDF DOI [BibTex]

PDF PostScript PDF DOI [BibTex]


no image
Integrating Structured Biological data by Kernel Maximum Mean Discrepancy

Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H., Schölkopf, B., Smola, A.

Bioinformatics, 22(4: ISMB 2006 Conference Proceedings):e49-e57, August 2006 (article)

Abstract
Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernel-based statistical test for this problem, based on the fact that two distributions are different if and only if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only to vectors, but strings, sequences, graphs, and other common structured data types arising in molecular biology. Results: We study the practical feasibility of an MMD-based test on three central data integration tasks: Testing cross-platform comparability of microarray data, cancer diagnosis, and data-content based schema matching for two different protein function classification schemas. In all of these experiments, including high-dimensional ones, MMD is very accurate in finding samples that were generated from the same distribution, and outperforms its best competitors. Conclusions: We have defined a novel statistical test of whether two samples are from the same distribution, compatible with both multivariate and structured data, that is fast, easy to implement, and works well, as confirmed by our experiments.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Large Scale Transductive SVMs

Collobert, R., Sinz, F., Weston, J., Bottou, L.

Journal of Machine Learning Research, 7, pages: 1687-1712, August 2006 (article)

Abstract
We show how the Concave-Convex Procedure can be applied to the optimization of Transductive SVMs, which traditionally requires solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach.

ei

PostScript PDF PDF [BibTex]

PostScript PDF PDF [BibTex]


no image
Building Support Vector Machines with Reduced Classifier Complexity

Keerthi, S., Chapelle, O., DeCoste, D.

Journal of Machine Learning Research, 7, pages: 1493-1515, July 2006 (article)

Abstract
Support vector machines (SVMs), though accurate, are not preferred in applications requiring great classification speed, due to the number of support vectors being large. To overcome this problem we devise a primal method with the following properties: (1) it decouples the idea of basis functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions of a specified maximum size ($dmax$) to approximate the SVM primal cost function well; (3) it is efficient and roughly scales as $O(ndmax^2)$ where $n$ is the number of training examples; and, (4) the number of basis functions it requires to achieve an accuracy close to the SVM accuracy is usually far less than the number of SVM support vectors.

ei

PDF [BibTex]

PDF [BibTex]


no image
ARTS: Accurate Recognition of Transcription Starts in Human

Sonnenburg, S., Zien, A., Rätsch, G.

Bioinformatics, 22(14):e472-e480, July 2006 (article)

Abstract
Motivation: One of the most important features of genomic DNA are the protein-coding genes. While it is of great value to identify those genes and the encoded proteins, it is also crucial to understand how their transcription is regulated. To this end one has to identify the corresponding promoters and the contained transcription factor binding sites. TSS finders can be used to locate potential promoters. They may also be used in combination with other signal and content detectors to resolve entire gene structures. Results: We have developed a novel kernel based method - called ARTS - that accurately recognizes transcription start sites in human. The application of otherwise too computationally expensive Support Vector Machines was made possible due to the use of efficient training and evaluation techniques using suffix tries. In a carefully designed experimental study, we compare our TSS finder to state-of-the-art methods from the literature: McPromoter, Eponine and FirstEF. For given false positive rates within a reasonable range, we consistently achieve considerably higher true positive rates. For instance, ARTS finds about 24% true positives at a false positive rate of 1/1000, where the other methods find less than half (10.5%). Availability: Datasets, model selection results, whole genome predictions, and additional experimental results are available at http://www.fml.tuebingen.mpg.de/raetsch/projects/arts

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MR/PET Attenuation Correction

Hofmann, M., Schölkopf, B., Steinke, F., Pichler, B.

Max-Planck-Gesellschaft, Biologische Kybernetik, July 2006 (patent)

ei

[BibTex]

[BibTex]


no image
Large Scale Multiple Kernel Learning

Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.

Journal of Machine Learning Research, 7, pages: 1531-1565, July 2006 (article)

Abstract
While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and one-class classification. Experimental results show that the proposed algorithm works for hundred thousands of examples or hundreds of kernels to be combined, and helps for automatic model selection, improving the interpretability of the learning result. In a second part we discuss general speed up mechanism for SVMs, especially when used with sparse feature maps as appear for string kernels, allowing us to train a string kernel SVM on a 10 million real-world splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly available at http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

ei

PDF [BibTex]

PDF [BibTex]


no image
Factorial coding of natural images: how effective are linear models in removing higher-order dependencies?

Bethge, M.

Journal of the Optical Society of America A, 23(6):1253-1268, June 2006 (article)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classifying EEG and ECoG Signals without Subject Training for Fast BCI Implementation: Comparison of Non-Paralysed and Completely Paralysed Subjects

Hill, N., Lal, T., Schröder, M., Hinterberger, T., Wilhelm, B., Nijboer, F., Mochty, U., Widman, G., Elger, C., Schölkopf, B., Kübler, A., Birbaumer, N.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2):183-186, June 2006 (article)

Abstract
We summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of EEG or ECoG signals for each subject. We apply the same experimental and analytical methods to 11 non-paralysed subjects (8 EEG, 3 ECoG), and to 5 paralysed subjects (4 EEG, 1 ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the non-paralysed subjects, it proved impossible to classify the signals obtained from the paralysed patients by the same methods. This highlights the fact that though certain BCI paradigms may work well with healthy subjects, this does not necessarily indicate success with the target user group. We outline possible reasons for this failure to transfer.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
SCARNA: Fast and Accurate Structural Alignment of RNA Sequences by Matching Fixed-Length Stem Fragments

Tabei, Y., Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 22(14):1723-1729, May 2006 (article)

Abstract
The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but their potential secondary structures. Sankoff‘s algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable to the much slower existing algorithms.

ei

PDF Web DOI [BibTex]


no image
The Effect of Artifacts on Dependence Measurement in fMRI

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

Magnetic Resonance Imaging, 24(4):401-409, April 2006 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Phase noise and the classification of natural images

Wichmann, F., Braun, D., Gegenfurtner, K.

Vision Research, 46(8-9):1520-1529, April 2006 (article)

Abstract
We measured the effect of global phase manipulations on a rapid animal categorization task. The Fourier spectra of our images of natural scenes were manipulated by adding zero-mean random phase noise at all spatial frequencies. The phase noise was the independent variable, uniformly and symmetrically distributed between 0 degree and ±180 degrees. Subjects were remarkably resistant to phase noise. Even with ±120 degree phase noise subjects were still performing at 75% correct. The high resistance of the subjects’ animal categorization rate to phase noise suggests that the visual system is highly robust to such random image changes. The proportion of correct answers closely followed the correlation between original and the phase noise-distorted images. Animal detection rate was higher when the same task was performed with contrast reduced versions of the same natural images, at contrasts where the contrast reduction mimicked that resulting from our phase randomization. Since the subjects’ categorization rate was better in the contrast experiment, reduction of local contrast alone cannot explain the performance in the phase noise experiment. This result obtained with natural images differs from those obtained for simple sinusoidal stimuli were performance changes due to phase changes are attributed to local contrast changes only. Thus the global phasechange accompanying disruption of image structure such as edges and object boundaries at different spatial scales reduces object classification over and above the performance deficit resulting from reducing contrast. Additional colour information improves the categorization performance by 2 %.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Direct Method for Building Sparse Kernel Learning Algorithms

Wu, M., Schölkopf, B., BakIr, G.

Journal of Machine Learning Research, 7, pages: 603-624, April 2006 (article)

Abstract
Many Kernel Learning Algorithms(KLA), including Support Vector Machine (SVM), result in a Kernel Machine (KM), such as a kernel classifier, whose key component is a weight vector in a feature space implicitly introduced by a positive definite kernel function. This weight vector is usually obtained by solving a convex optimization problem. Based on this fact we present a direct method to build Sparse Kernel Learning Algorithms (SKLA) by adding one more constraint to the original convex optimization problem, such that the sparseness of the resulting KM is explicitly controlled while at the same time the performance of the resulting KM can be kept as high as possible. A gradient based approach is provided to solve this modified optimization problem. Applying this method to the SVM results in a concrete algorithm for building Sparse Large Margin Classifiers (SLMC). Further analysis of the SLMC algorithm indicates that it essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace, the different classes of data are linearly well separated. Experimental results over several classification benchmarks demonstrate the effectiveness of our approach.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Statistical Properties of Kernel Principal Component Analysis

Blanchard, G., Bousquet, O., Zwald, L.

Machine Learning, 66(2-3):259-294, March 2006 (article)

Abstract
We study the properties of the eigenvalues of Gram matrices in a non-asymptotic setting. Using local Rademacher averages, we provide data-dependent and tight bounds for their convergence towards eigenvalues of the corresponding kernel operator. We perform these computations in a functional analytic framework which allows to deal implicitly with reproducing kernel Hilbert spaces of infinite dimension. This can have applications to various kernel algorithms, such as Support Vector Machines (SVM). We focus on Kernel Principal Component Analysis (KPCA) and, using such techniques, we obtain sharp excess risk bounds for the reconstruction error. In these bounds, the dependence on the decay of the spectrum and on the closeness of successive eigenvalues is made explicit.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Network-based de-noising improves prediction from microarray data

Kato, T., Murata, Y., Miura, K., Asai, K., Horton, P., Tsuda, K., Fujibuchi, W.

BMC Bioinformatics, 7(Suppl. 1):S4-S4, March 2006 (article)

Abstract
Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson‘s correlation coefficient between the true and predicted respon se values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Model-based Design Analysis and Yield Optimization

Pfingsten, T., Herrmann, D., Rasmussen, C.

IEEE Transactions on Semiconductor Manufacturing, 19(4):475-486, February 2006 (article)

Abstract
Fluctuations are inherent to any fabrication process. Integrated circuits and micro-electro-mechanical systems are particularly affected by these variations, and due to high quality requirements the effect on the devices’ performance has to be understood quantitatively. In recent years it has become possible to model the performance of such complex systems on the basis of design specifications, and model-based Sensitivity Analysis has made its way into industrial engineering. We show how an efficient Bayesian approach, using a Gaussian process prior, can replace the commonly used brute-force Monte Carlo scheme, making it possible to apply the analysis to computationally costly models. We introduce a number of global, statistically justified sensitivity measures for design analysis and optimization. Two models of integrated systems serve us as case studies to introduce the analysis and to assess its convergence properties. We show that the Bayesian Monte Carlo scheme can save costly simulation runs and can ensure a reliable accuracy of the analysis.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Weighting of experimental evidence in macromolecular structure determination

Habeck, M., Rieping, W., Nilges, M.

Proceedings of the National Academy of Sciences of the United States of America, 103(6):1756-1761, February 2006 (article)

Abstract
The determination of macromolecular structures requires weighting of experimental evidence relative to prior physical information. Although it can critically affect the quality of the calculated structures, experimental data are routinely weighted on an empirical basis. At present, cross-validation is the most rigorous method to determine the best weight. We describe a general method to adaptively weight experimental data in the course of structure calculation. It is further shown that the necessity to define weights for the data can be completely alleviated. We demonstrate the method on a structure calculation from NMR data and find that the resulting structures are optimal in terms of accuracy and structural quality. Our method is devoid of the bias imposed by an empirical choice of the weight and has some advantages over estimating the weight by cross-validation.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Classification of Faces in Man and Machine

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

Neural Computation, 18(1):143-165, January 2006 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]