Header logo is


2015


Optimizing Average Precision using Weakly Supervised Data
Optimizing Average Precision using Weakly Supervised Data

Behl, A., Mohapatra, P., Jawahar, C. V., Kumar, M. P.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2015 (article)

avg

[BibTex]

2015


[BibTex]


no image
Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video

Stueckler, J., Behnke, S.

International Journal of Computer Vision (IJCV), 113(3):233-245, 2015 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2014


3D Traffic Scene Understanding from Movable Platforms
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

2014


pdf link (url) [BibTex]


no image
Rough Terrain Mapping and Navigation using a Continuously Rotating 2D Laser Scanner

Schadler, M., Stueckler, J., Behnke, S.

Künstliche Intelligenz (KI), 28(2):93-99, Springer, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Dense Real-Time Mapping of Object-Class Semantics from RGB-D Video

Stueckler, J., Waldvogel, B., Schulz, H., Behnke, S.

Journal of Real-Time Image Processing (JRTIP), 10(4):599-609, Springer, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Multi-Resolution Surfel Maps for Efficient Dense 3D Modeling and Tracking

Stueckler, J., Behnke, S.

Journal of Visual Communication and Image Representation (JVCI), 25(1):137-147, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Efficient Dense Registration, Segmentation, and Modeling Methods for RGB-D Environment Perception

Stueckler, J.

Faculty of Mathematics and Natural Sciences, University of Bonn, Germany, 2014 (phdthesis)

ev

link (url) [BibTex]

link (url) [BibTex]

2013


Vision meets Robotics: The {KITTI} Dataset
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

avg ps

pdf DOI [BibTex]

2013


pdf DOI [BibTex]


Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms
Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms

Geiger, A.

Karlsruhe Institute of Technology, Karlsruhe Institute of Technology, April 2013 (phdthesis)

Abstract
Visual 3D scene understanding is an important component in autonomous driving and robot navigation. Intelligent vehicles for example often base their decisions on observations obtained from video cameras as they are cheap and easy to employ. Inner-city intersections represent an interesting but also very challenging scenario in this context: The road layout may be very complex and observations are often noisy or even missing due to heavy occlusions. While Highway navigation and autonomous driving on simple and annotated intersections have already been demonstrated successfully, understanding and navigating general inner-city crossings with little prior knowledge remains an unsolved problem. This thesis is a contribution to understanding multi-object traffic scenes from video sequences. All data is provided by a camera system which is mounted on top of the autonomous driving platform AnnieWAY. The proposed probabilistic generative model reasons jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, the scene topology, geometry as well as traffic activities are inferred from short video sequences. The model takes advantage of monocular information in the form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the benefit of stereo features such as 3D scene flow and occupancy grids is investigated. Motivated by the impressive driving capabilities of humans, no further information such as GPS, lidar, radar or map knowledge is required. Experiments conducted on 113 representative intersection sequences show that the developed approach successfully infers the correct layout in a variety of difficult scenarios. To evaluate the importance of each feature cue, experiments with different feature combinations are conducted. Additionally, the proposed method is shown to improve object detection and object orientation estimation performance.

avg ps

pdf [BibTex]

pdf [BibTex]


no image
Efficient 3D Object Perception and Grasp Planning for Mobile Manipulation in Domestic Environments

Stueckler, J., Steffens, R., Holz, D., Behnke, S.

Robotics and Autonomous Systems (RAS), 61(10):1106-1115, 2013 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]