Header logo is


2018


Deep Reinforcement Learning for Event-Triggered Control
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

al ics

arXiv PDF DOI Project Page Project Page [BibTex]

2018


arXiv PDF DOI Project Page Project Page [BibTex]


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

arXiv IEEE Xplore DOI Project Page [BibTex]


no image
Discovering and Teaching Optimal Planning Strategies

Lieder, F., Callaway, F., Krueger, P. M., Das, P., Griffiths, T. L., Gul, S.

In The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018, Falk Lieder and Frederick Callaway contributed equally to this publication. (inproceedings)

Abstract
How should we think and decide, and how can we learn to make better decisions? To address these questions we formalize the discovery of cognitive strategies as a metacognitive reinforcement learning problem. This formulation leads to a computational method for deriving optimal cognitive strategies and a feedback mechanism for accelerating the process by which people learn how to make better decisions. As a proof of concept, we apply our approach to develop an intelligent system that teaches people optimal planning stratgies. Our training program combines a novel process-tracing paradigm that makes peoples latent planning strategies observable with an intelligent system that gives people feedback on how their planning strategy could be improved. The pedagogy of our intelligent tutor is based on the theory that people discover their cognitive strategies through metacognitive reinforcement learning. Concretely, the tutor’s feedback is designed to maximally accelerate people’s metacognitive reinforcement learning towards the optimal cognitive strategy. A series of four experiments confirmed that training with the cognitive tutor significantly improved people’s decision-making competency: Experiment 1 demonstrated that the cognitive tutor’s feedback accelerates participants’ metacognitive learning. Experiment 2 found that this training effect transfers to more difficult planning problems in more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor conveys additional benefits above and beyond verbal description of the optimal planning strategy. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Discovering Rational Heuristics for Risky Choice

Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., Lieder, F.

The 14th biannual conference of the German Society for Cognitive Science, GK, The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (conference)

Abstract
How should we think and decide to make the best possible use of our precious time and limited cognitive resources? And how do people’s cognitive strategies compare to this ideal? We study these questions in the domain of multi-alternative risky choice using the methodology of resource-rational analysis. To answer the first question, we leverage a new meta-level reinforcement learning algorithm to derive optimal heuristics for four different risky choice environments. We find that our method rediscovers two fast-and-frugal heuristics that people are known to use, namely Take-The-Best and choosing randomly, as resource-rational strategies for specific environments. Our method also discovered a novel heuristic that combines elements of Take-The-Best and Satisficing. To answer the second question, we use the Mouselab paradigm to measure how people’s decision strategies compare to the predictions of our resource-rational analysis. We found that our resource-rational analysis correctly predicted which strategies people use and under which conditions they use them. While people generally tend to make rational use of their limited resources overall, their strategy choices do not always fully exploit the structure of each decision problem. Overall, people’s decision operations were about 88% as resource-rational as they could possibly be. A formal model comparison confirmed that our resource-rational model explained people’s decision strategies significantly better than the Directed Cognition model of Gabaix et al. (2006). Our study is a proof-of-concept that optimal cognitive strategies can be automatically derived from the principle of resource-rationality. Our results suggest that resource-rational analysis is a promising approach for uncovering people’s cognitive strategies and revisiting the debate about human rationality with a more realistic normative standard.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning to Select Computations

Callaway, F., Gul, S., Krueger, P. M., Griffiths, T. L., Lieder, F.

In Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference, August 2018, Frederick Callaway and Sayan Gul and Falk Lieder contributed equally to this publication. (inproceedings)

Abstract
The efficient use of limited computational resources is an essential ingredient of intelligence. Selecting computations optimally according to rational metareasoning would achieve this, but this is computationally intractable. Inspired by psychology and neuroscience, we propose the first concrete and domain-general learning algorithm for approximating the optimal selection of computations: Bayesian metalevel policy search (BMPS). We derive this general, sample-efficient search algorithm for a computation-selecting metalevel policy based on the insight that the value of information lies between the myopic value of information and the value of perfect information. We evaluate BMPS on three increasingly difficult metareasoning problems: when to terminate computation, how to allocate computation between competing options, and planning. Across all three domains, BMPS achieved near-optimal performance and compared favorably to previously proposed metareasoning heuristics. Finally, we demonstrate the practical utility of BMPS in an emergency management scenario, even accounting for the overhead of metareasoning.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Kernel Recursive ABC: Point Estimation with Intractable Likelihood

Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.

Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)

Abstract
We propose a novel approach to parameter estimation for simulator-based statistical models with intractable likelihood. Our proposed method involves recursive application of kernel ABC and kernel herding to the same observed data. We provide a theoretical explanation regarding why the approach works, showing (for the population setting) that, under a certain assumption, point estimates obtained with this method converge to the true parameter, as recursion proceeds. We have conducted a variety of numerical experiments, including parameter estimation for a real-world pedestrian flow simulator, and show that in most cases our method outperforms existing approaches.

pn

Paper [BibTex]

Paper [BibTex]


Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

am ics

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (conference)

ei pn

[BibTex]

[BibTex]


Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets
Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets

Qiu, T., Palagi, S., Sachs, J., Fischer, P.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 3595-3600, May 2018 (inproceedings)

Abstract
Wireless actuation by magnetic fields allows for the operation of untethered miniaturized devices, e.g. in biomedical applications. Nevertheless, generating large controlled forces over relatively large distances is challenging. Magnetic torques are easier to generate and control, but they are not always suitable for the tasks at hand. Moreover, strong magnetic fields are required to generate a sufficient torque, which are difficult to achieve with electromagnets. Here, we demonstrate a soft miniaturized actuator that transforms an externally applied magnetic torque into a controlled linear force. We report the design, fabrication and characterization of both the actuator and the magnetic field generator. We show that the magnet assembly, which is based on a set of rotating permanent magnets, can generate strong controlled oscillating fields over a relatively large workspace. The actuator, which is 3D-printed, can lift a load of more than 40 times its weight. Finally, we show that the actuator can be further miniaturized, paving the way towards strong, wirelessly powered microactuators.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Online Learning of a Memory for Learning Rates
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

am

pdf video code [BibTex]

pdf video code [BibTex]


Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Balles, L., Hennig, P.

In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted

Abstract
The ADAM optimizer is exceedingly popular in the deep learning community. Often it works very well, sometimes it doesn't. Why? We interpret ADAM as a combination of two aspects: for each weight, the update direction is determined by the sign of stochastic gradients, whereas the update magnitude is determined by an estimate of their relative variance. We disentangle these two aspects and analyze them in isolation, gaining insight into the mechanisms underlying ADAM. This analysis also extends recent results on adverse effects of ADAM on generalization, isolating the sign aspect as the problematic one. Transferring the variance adaptation to SGD gives rise to a novel method, completing the practitioner's toolbox for problems where ADAM fails.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
L4: Practical loss-based stepsize adaptation for deep learning

Rolinek, M., Martius, G.

In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)

al

Github link (url) Project Page [BibTex]

Github link (url) Project Page [BibTex]


Systematic self-exploration of behaviors for robots in a dynamical systems framework
Systematic self-exploration of behaviors for robots in a dynamical systems framework

Pinneri, C., Martius, G.

In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)

Abstract
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) [Der and Martius, PNAS 2015], has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a self-determined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Learning equations for extrapolation and control
Learning equations for extrapolation and control

Sahoo, S. S., Lampert, C. H., Martius, G.

In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)

Abstract
We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.

al

Code Arxiv Poster Slides link (url) Project Page [BibTex]

Code Arxiv Poster Slides link (url) Project Page [BibTex]


Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns

Sun, H., Martius, G.

Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)

Abstract
Haptic sensation is an important modality for interacting with the real world. This paper proposes a general framework of inferring haptic forces on the surface of a 3D structure from internal deformations using a small number of physical sensors instead of employing dense sensor arrays. Using machine learning techniques, we optimize the sensor number and their placement and are able to obtain high-precision force inference for a robotic limb using as few as 9 sensors. For the optimal and sparse placement of the measurement units (strain gauges), we employ data-driven methods based on data obtained by finite element simulation. We compare data-driven approaches with model-based methods relying on geometric distance and information criteria such as Entropy and Mutual Information. We validate our approach on a modified limb of the “Poppy” robot [1] and obtain 8 mm localization precision.

al

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2016


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

2016


arXiv PDF DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 502-508, November 2016 (conference)

am ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 650-655, November 2016 (conference)

am ei

final link (url) DOI Project Page [BibTex]

final link (url) DOI Project Page [BibTex]


no image
The Role of Measurement Uncertainty in Optimal Control for Contact Interactions
Workshop on the Algorithmic Foundations of Robotics, pages: 22, November 2016 (conference)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications that involve interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of pre- cise knowledge of the world, which is not an actual disturbance. We de- velop a computationally efficient SOC algorithm, based on risk-sensitive control, that takes into account uncertainty in the measurements. We include the dynamics of an observer in such a way that the control law explicitly depends on the current measurement uncertainty. We show that high measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise variance that creates stiff behaviors. Simulation results on a simple 2D manipulator show that our controller can create better interaction with the environment under uncertain contact locations than traditional SOC approaches.

am

arXiv [BibTex]

arXiv [BibTex]


Learning Where to Search Using Visual Attention
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H. P. A., Butz, M. V., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

am

Project Page [BibTex]

PDF Project Page [BibTex]


Parameter Learning for Improving Binary Descriptor Matching
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2016 (inproceedings)

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

am

[BibTex]

[BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3750-3756, October 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Superpixel Convolutional Networks using Bilateral Inceptions
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster Project Page Project Page [BibTex]

pdf supplementary poster Project Page Project Page [BibTex]


Barrista - Caffe Well-Served
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

In ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (inproceedings)

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


Soft continuous microrobots with multiple intrinsic degrees of freedom
Soft continuous microrobots with multiple intrinsic degrees of freedom

Palagi, S., Mark, A. G., Melde, K., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
One of the main challenges in the development of microrobots, i.e. robots at the sub-millimeter scale, is the difficulty of adopting traditional solutions for power, control and, especially, actuation. As a result, most current microrobots are directly manipulated by external fields, and possess only a few passive degrees of freedom (DOFs). We have reported a strategy that enables embodiment, remote powering and control of a large number of DOFs in mobile soft microrobots. These consist of photo-responsive materials, such that the actuation of their soft continuous body can be selectively and dynamically controlled by structured light fields. Here we use finite-element modelling to evaluate the effective number of DOFs that are addressable in our microrobots. We also demonstrate that by this flexible approach different actuation patterns can be obtained, and thus different locomotion performances can be achieved within the very same microrobot. The reported results confirm the versatility of the proposed approach, which allows for easy application-specific optimization and online reconfiguration of the microrobot's behavior. Such versatility will enable advanced applications of robotics and automation at the micro scale.

pf

DOI [BibTex]

DOI [BibTex]


Wireless actuator based on ultrasonic bubble streaming
Wireless actuator based on ultrasonic bubble streaming

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
Miniaturized actuators are a key element for the manipulation and automation at small scales. Here, we propose a new miniaturized actuator, which consists of an array of micro gas bubbles immersed in a fluid. Under ultrasonic excitation, the oscillation of micro gas bubbles results in acoustic streaming and provides a propulsive force that drives the actuator. The actuator was fabricated by lithography and fluidic streaming was observed under ultrasound excitation. Theoretical modelling and numerical simulations were carried out to show that lowing the surface tension results in a larger amplitude of the bubble oscillation, and thus leads to a higher propulsive force. Experimental results also demonstrate that the propulsive force increases 3.5 times when the surface tension is lowered by adding a surfactant. An actuator with a 4×4 mm 2 surface area provides a driving force of about 0.46 mN, suggesting that it is possible to be used as a wireless actuator for small-scale robots and medical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Robust Gaussian Filtering using a Pseudo Measurement
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference (ACC), Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

am ics

Web link (url) DOI Project Page [BibTex]

Web link (url) DOI Project Page [BibTex]


Active Uncertainty Calibration in Bayesian ODE Solvers
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Robot Arm Pose Estimation by Pixel-wise Regression of Joint Angles
Robot Arm Pose Estimation by Pixel-wise Regression of Joint Angles

Widmaier, F., Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
To achieve accurate vision-based control with a robotic arm, a good hand-eye coordination is required. However, knowing the current configuration of the arm can be very difficult due to noisy readings from joint encoders or an inaccurate hand-eye calibration. We propose an approach for robot arm pose estimation that uses depth images of the arm as input to directly estimate angular joint positions. This is a frame-by-frame method which does not rely on good initialisation of the solution from the previous frames or knowledge from the joint encoders. For estimation, we employ a random regression forest which is trained on synthetically generated data. We compare different training objectives of the forest and also analyse the influence of prior segmentation of the arms on accuracy. We show that this approach improves previous work both in terms of computational complexity and accuracy. Despite being trained on synthetic data only, we demonstrate that the estimation also works on real depth images.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Optimizing for what matters: the Top Grasp Hypothesis
Optimizing for what matters: the Top Grasp Hypothesis

Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
In this paper, we consider the problem of robotic grasping of objects when only partial and noisy sensor data of the environment is available. We are specifically interested in the problem of reliably selecting the best hypothesis from a whole set. This is commonly the case when trying to grasp an object for which we can only observe a partial point cloud from one viewpoint through noisy sensors. There will be many possible ways to successfully grasp this object, and even more which will fail. We propose a supervised learning method that is trained with a ranking loss. This explicitly encourages that the top-ranked training grasp in a hypothesis set is also positively labeled. We show how we adapt the standard ranking loss to work with data that has binary labels and explain the benefits of this formulation. Additionally, we show how we can efficiently optimize this loss with stochastic gradient descent. In quantitative experiments, we show that we can outperform previous models by a large margin.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Exemplar-based Prediction of Object Properties from Local Shape Similarity
Exemplar-based Prediction of Object Properties from Local Shape Similarity

Bohg, J., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We propose a novel method that enables a robot to identify a graspable object part of an unknown object given only noisy and partial information that is obtained from an RGB-D camera. Our method combines the benefits of local with the advantages of global methods. It learns a classifier that takes a local shape representation as input and outputs the probability that a grasp applied at this location will be successful. Given a query data point that is classified in this way, we can retrieve all the locally similar training data points and use them to predict latent global object shape. This information may help to further prune positively labeled grasp hypotheses based on, e.g. relation to the predicted average global shape or suitability for a specific task. This prediction can also guide scene exploration to prune object shape hypotheses. To learn the function that maps local shape to grasp stability we use a Random Forest Classifier. We show that our method reaches the same classification performance as the current state-of-the-art on this dataset which uses a Convolutional Neural Network. Additionally, we exploit the natural ability of the Random Forest to cluster similar data. For a positively predicted query data point, we retrieve all the locally similar training data points that are associated with the same leaf nodes of the Random Forest. The main insight from this work is that local object shape that affords a grasp is also a good predictor of global object shape. We empirically support this claim with quantitative experiments. Additionally, we demonstrate the predictive capability of the method on some real data examples.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Automatic LQR Tuning Based on Gaussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]

Video - Automatic LQR Tuning Based on Gaussian Process Global Optimization - ICRA 2016 Video - Automatic Controller Tuning on a Two-legged Robot PDF DOI Project Page [BibTex]


Depth-based Object Tracking Using a Robust Gaussian Filter
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

am ics

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


Auxetic Metamaterial Simplifies Soft Robot Design
Auxetic Metamaterial Simplifies Soft Robot Design

Mark, A. G., Palagi, S., Qiu, T., Fischer, P.

In 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4951-4956, May 2016 (inproceedings)

Abstract
Soft materials are being adopted in robotics in order to facilitate biomedical applications and in order to achieve simpler and more capable robots. One route to simplification is to design the robot's body using `smart materials' that carry the burden of control and actuation. Metamaterials enable just such rational design of the material properties. Here we present a soft robot that exploits mechanical metamaterials for the intrinsic synchronization of two passive clutches which contact its travel surface. Doing so allows it to move through an enclosed passage with an inchworm motion propelled by a single actuator. Our soft robot consists of two 3D-printed metamaterials that implement auxetic and normal elastic properties. The design, fabrication and characterization of the metamaterials are described. In addition, a working soft robot is presented. Since the synchronization mechanism is a feature of the robot's material body, we believe that the proposed design will enable compliant and robust implementations that scale well with miniaturization.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Probabilistic Approximate Least-Squares
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning
A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning

Büchler, D., Ott, H., Peters, J.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 4086-4092, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (conference)

am ei

ICRA16final DOI Project Page [BibTex]

ICRA16final DOI Project Page [BibTex]


no image
Drifting Gaussian Processes with Varying Neighborhood Sizes for Online Model Learning

Meier, F., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

am

[BibTex]

[BibTex]


Towards Photo-Induced Swimming: Actuation of Liquid Crystalline  Elastomer in Water
Towards Photo-Induced Swimming: Actuation of Liquid Crystalline Elastomer in Water

cerretti, G., Martella, D., Zeng, H., Parmeggiani, C., Palagi, S., Mark, A. G., Melde, K., Qiu, T., Fischer, P., Wiersma, D.

In Proc. of SPIE 9738, pages: Laser 3D Manufacturing III, 97380T, April 2016 (inproceedings)

Abstract
Liquid Crystalline Elastomers (LCEs) are very promising smart materials that can be made sensitive to different external stimuli, such as heat, pH, humidity and light, by changing their chemical composition. In this paper we report the implementation of a nematically aligned LCE actuator able to undergo large light-induced deformations. We prove that this property is still present even when the actuator is submerged in fresh water. Thanks to the presence of azo-dye moieties, capable of going through a reversible trans-cis photo-isomerization, and by applying light with two different wavelengths we managed to control the bending of such actuator in the liquid environment. The reported results represent the first step towards swimming microdevices powered by light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Ensuring Ethical Behavior from Autonomous Systems
Ensuring Ethical Behavior from Autonomous Systems

Anderson, M., Anderson, S. L., Berenz, V.

In Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016, 2016 (inproceedings)

Abstract
We propose a method which generates reactive robot behavior learned from human demonstration. In order to do so, we use the Playful programming language which is based on the reactive programming paradigm. This allows us to represent the learned behavior as a set of associations between sensor and motor primitives in a human readable script. Distinguishing between sensor and motor primitives introduces a supplementary level of granularity and more importantly enforces feedback, increasing adaptability and robustness. As the experimental section shows, useful behaviors may be learned from a single demonstration covering a very limited portion of the task space.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Robust Online Inverse Dynamics Learning

Meier, F., Kappler, D., Ratliff, N., Schaal, S.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, 2016 (conference) Accepted

am

fmeier_iros_2016 [BibTex]

fmeier_iros_2016 [BibTex]


Self-Supervised Regrasping using Spatio-Temporal Tactile Features and Reinforcement Learning
Self-Supervised Regrasping using Spatio-Temporal Tactile Features and Reinforcement Learning

Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G., Schaal, S.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]