Header logo is


2020


Thumb xl hetl
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article) To be published

ics

arXiv PDF DOI [BibTex]

2020


arXiv PDF DOI [BibTex]


Thumb xl l css
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article) To be published

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]

2010


no image
Reinforcement learning of full-body humanoid motor skills

Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

In Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages: 405-410, December 2010, clmc (inproceedings)

Abstract
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms would become computationally infeasible and require a prohibitive amount of trials to explore such high-dimensional spaces. In this paper, we present a probabilistic reinforcement learning approach, which is derived from the framework of stochastic optimal control and path integrals. The algorithm, called Policy Improvement with Path Integrals (PI2), has a surprisingly simple form, has no open tuning parameters besides the exploration noise, is model-free, and performs numerically robustly in high dimensional learning problems. We demonstrate how PI2 is able to learn full-body motor skills on a 34-DOF humanoid robot. To demonstrate the generality of our approach, we also apply PI2 in the context of variable impedance control, where both planned trajectories and gain schedules for each joint are optimized simultaneously.

am

link (url) [BibTex]

2010


link (url) [BibTex]


no image
Computationally efficient algorithms for statistical image processing: Implementation in R

Langovoy, M., Wittich, O.

(2010-053), EURANDOM, Technische Universiteit Eindhoven, December 2010 (techreport)

Abstract
In the series of our earlier papers on the subject, we proposed a novel statistical hy- pothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We developed algorithms that allowed to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of un- known distribution. No boundary shape constraints were imposed on the objects, only a weak bulk condition for the object's interior was required. Our algorithms have linear complexity and exponential accuracy. In the present paper, we describe an implementation of our nonparametric hypothesis testing method. We provide a program that can be used for statistical experiments in image processing. This program is written in the statistical programming language R.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning Table Tennis with a Mixture of Motor Primitives

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010), pages: 411-416, IEEE, Piscataway, NJ, USA, 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), December 2010 (inproceedings)

Abstract
Table tennis is a sufficiently complex motor task for studying complete skill learning systems. It consists of several elementary motions and requires fast movements, accurate control, and online adaptation. To represent the elementary movements needed for robot table tennis, we rely on dynamic systems motor primitives (DMP). While such DMPs have been successfully used for learning a variety of simple motor tasks, they only represent single elementary actions. In order to select and generalize among different striking movements, we present a new approach, called Mixture of Motor Primitives that uses a gating network to activate appropriate motor primitives. The resulting policy enables us to select among the appropriate motor primitives as well as to generalize between them. In order to obtain a fully learned robot table tennis setup, we also address the problem of predicting the necessary context information, i.e., the hitting point in time and space where we want to hit the ball. We show that the resulting setup was capable of playing rudimentary table tennis using an anthropomorphic robot arm.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, December 2010 (techreport)

Abstract
We propose a novel algorithm to solve the expectation propagation relaxation of Bayesian inference for continuous-variable graphical models. In contrast to most previous algorithms, our method is provably convergent. By marrying convergent EP ideas from (Opper&Winther 05) with covariance decoupling techniques (Wipf&Nagarajan 08, Nickisch&Seeger 09), it runs at least an order of magnitude faster than the most commonly used EP solver.

ei

Web [BibTex]

Web [BibTex]


no image
Learning an interactive segmentation system

Nickisch, H., Rother, C., Kohli, P., Rhemann, C.

In Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2010), pages: 274-281, (Editors: Chellapa, R. , P. Anandan, A. N. Rajagopalan, P. J. Narayanan, P. Torr), ACM Press, Nw York, NY, USA, Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), December 2010 (inproceedings)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user -- a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy

Bangert, M., Hennig, P., Oelfke, U.

In pages: 746-751 , (Editors: Draghici, S. , T.M. Khoshgoftaar, V. Palade, W. Pedrycz, M.A. Wani, X. Zhu), IEEE, Piscataway, NJ, USA, Ninth International Conference on Machine Learning and Applications (ICMLA), December 2010 (inproceedings)

Abstract
We present a method for fully automated selection of treatment beam ensembles for external radiation therapy. We reformulate the beam angle selection problem as a clustering problem of locally ideal beam orientations distributed on the unit sphere. For this purpose we construct an infinite mixture of von Mises-Fisher distributions, which is suited in general for density estimation from data on the D-dimensional sphere. Using a nonparametric Dirichlet process prior, our model infers probability distributions over both the number of clusters and their parameter values. We describe an efficient Markov chain Monte Carlo inference algorithm for posterior inference from experimental data in this model. The performance of the suggested beam angle selection framework is illustrated for one intra-cranial, pancreas, and prostate case each. The infinite von Mises-Fisher mixture model (iMFMM) creates between 18 and 32 clusters, depending on the patient anatomy. This suggests to use the iMFMM directly for beam ensemble selection in robotic radio surgery, or to generate low-dimensional input for both subsequent optimization of trajectories for arc therapy and beam ensemble selection for conventional radiation therapy.

ei pn

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis

Besserve, M., Schölkopf, B., Logothetis, N., Panzeri, S.

Journal of Computational Neuroscience, 29(3):547-566, December 2010 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Tackling Box-Constrained Optimization via a New Projected Quasi-Newton Approach

Kim, D., Sra, S., Dhillon, I.

SIAM Journal on Scientific Computing, 32(6):3548-3563 , December 2010 (article)

Abstract
Numerous scientific applications across a variety of fields depend on box-constrained convex optimization. Box-constrained problems therefore continue to attract research interest. We address box-constrained (strictly convex) problems by deriving two new quasi-Newton algorithms. Our algorithms are positioned between the projected-gradient [J. B. Rosen, J. SIAM, 8 (1960), pp. 181–217] and projected-Newton [D. P. Bertsekas, SIAM J. Control Optim., 20 (1982), pp. 221–246] methods. We also prove their convergence under a simple Armijo step-size rule. We provide experimental results for two particular box-constrained problems: nonnegative least squares (NNLS), and nonnegative Kullback–Leibler (NNKL) minimization. For both NNLS and NNKL our algorithms perform competitively as compared to well-established methods on medium-sized problems; for larger problems our approach frequently outperforms the competition.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Algorithmen zum Automatischen Erlernen von Motorfähigkeiten

Peters, J., Kober, J., Schaal, S.

at - Automatisierungstechnik, 58(12):688-694, December 2010 (article)

Abstract
Robot learning methods which allow autonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Online algorithms for submodular minimization with combinatorial constraints

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Structures, Algorithms and Applications (DISCML), December 2010 (inproceedings)

Abstract
Building on recent results for submodular minimization with combinatorial constraints, and on online submodular minimization, we address online approximation algorithms for submodular minimization with combinatorial constraints. We discuss two types of algorithms and outline approximation algorithms that integrate into those.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis of Co-clustering and Beyond

Seldin, Y., Tishby, N.

Journal of Machine Learning Research, 11, pages: 3595-3646, December 2010 (article)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Multi-agent random walks for local clustering

Alamgir, M., von Luxburg, U.

In Proceedings of the IEEE International Conference on Data Mining (ICDM 2010), pages: 18-27, (Editors: Webb, G. I., B. Liu, C. Zhang, D. Gunopulos, X. Wu), IEEE, Piscataway, NJ, USA, IEEE International Conference on Data Mining (ICDM), December 2010 (inproceedings)

Abstract
We consider the problem of local graph clustering where the aim is to discover the local cluster corresponding to a point of interest. The most popular algorithms to solve this problem start a random walk at the point of interest and let it run until some stopping criterion is met. The vertices visited are then considered the local cluster. We suggest a more powerful alternative, the multi-agent random walk. It consists of several “agents” connected by a fixed rope of length l. All agents move independently like a standard random walk on the graph, but they are constrained to have distance at most l from each other. The main insight is that for several agents it is harder to simultaneously travel over the bottleneck of a graph than for just one agent. Hence, the multi-agent random walk has less tendency to mistakenly merge two different clusters than the original random walk. In our paper we analyze the multi-agent random walk theoretically and compare it experimentally to the major local graph clustering algorithms from the literature. We find that our multi-agent random walk consistently outperforms these algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Lack of Discriminatory Function for Endoscopy Skills on a Computer-based Simulator

Kim, S., Spencer, G., Makar, G., Ahmad, N., Jaffe, D., Ginsberg, G., Kuchenbecker, K. J., Kochman, M.

Surgical Endoscopy, 24(12):3008-3015, December 2010 (article)

hi

[BibTex]

[BibTex]


no image
Effects of Packet Losses to Stability in Bilateral Teleoperation Systems

Hong, A., Cho, JH., Lee, DY.

In pages: 1043-1044, Korean Society of Mechanical Engineers, Seoul, South Korea, KSME Fall Annual Meeting, November 2010 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Gaussian Processes for Machine Learning (GPML) Toolbox

Rasmussen, C., Nickisch, H.

Journal of Machine Learning Research, 11, pages: 3011-3015, November 2010 (article)

Abstract
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace's method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

ei

Web [BibTex]

Web [BibTex]


no image
Combining Real-Time Brain-Computer Interfacing and Robot Control for Stroke Rehabilitation

Gomez Rodriguez, M., Peters, J., Hill, J., Gharabaghi, A., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of SIMPAR 2010 Workshops, pages: 59-63, Brain-Computer Interface Workshop at SIMPAR: 2nd International Conference on Simulation, Modeling, and Programming for Autonomous Robots, November 2010 (inproceedings)

Abstract
Brain-Computer Interfaces based on electrocorticography (ECoG) or electroencephalography (EEG), in combination with robot-assisted active physical therapy, may support traditional rehabilitation procedures for patients with severe motor impairment due to cerebrovascular brain damage caused by stroke. In this short report, we briefly review the state-of-the art in this exciting new field, give an overview of the work carried out at the Max Planck Institute for Biological Cybernetics and the University of T{\"u}bingen, and discuss challenges that need to be addressed in order to move from basic research to clinical studies.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19748-19753, November 2010 (article)

Abstract
Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution. This map, together with a 6.1-Å map of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES–ES and r-protein–ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Policy gradient methods

Peters, J.

Scholarpedia, 5(11):3698, November 2010 (article)

Abstract
Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent. They do not suffer from many of the problems that have been marring traditional reinforcement learning approaches such as the lack of guarantees of a value function, the intractability problem resulting from uncertain state information and the complexity arising from continuous states & actions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19754-19759, November 2010 (article)

Abstract
Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 15.52.25
Enhanced Visual Scene Understanding through Human-Robot Dialog

Johnson-Roberson, M., Bohg, J., Kragic, D., Skantze, G., Gustafson, J., Carlson, R.

In Proceedings of AAAI 2010 Fall Symposium: Dialog with Robots, November 2010 (inproceedings)

am

pdf [BibTex]

pdf [BibTex]


no image
Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

Camps-Valls, G., Shervashidze, N., Borgwardt, K.

IEEE Geoscience and Remote Sensing Letters, 7(4):741-745, October 2010 (article)

Abstract
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal Inference Using the Algorithmic Markov Condition

Janzing, D., Schölkopf, B.

IEEE Transactions on Information Theory, 56(10):5168-5194, October 2010 (article)

Abstract
Inferring the causal structure that links $n$ observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when the sample size is one. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also sketch some ideas on how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Recurrent Policy Gradients

Wierstra, D., Förster, A., Peters, J., Schmidhuber, J.

Logic Journal of the IGPL, 18(5):620-634, October 2010 (article)

Abstract
Reinforcement learning for partially observable Markov decision problems (POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches suffer significantly from this shortcoming and usually make strong assumptions on the problem domain such as perfect system models, state-estimators and a Markovian hidden system. Recurrent neural networks (RNNs) offer a natural framework for dealing with policy learning using hidden state and require only few limiting assumptions. As they can be trained well using gradient descent, they are suited for policy gradient approaches. In this paper, we present a policy gradient method, the Recurrent Policy Gradient which constitutes a model-free reinforcement learning method. It is aimed at training limited-memory stochastic policies on problems which require long-term memories of past observations. The approach involves approximating a policy gradient for a recurrent neural network by backpropagating return-weighted characteristic eligibilities through time. Using a ‘‘Long Short-Term Memory’’ RNN architecture, we are able to outperform previous RL methods on three important benchmark tasks. Furthermore, we show that using history-dependent baselines helps reducing estimation variance significantly, thus enabling our approach to tackle more challenging, highly stochastic environments.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning as a key ability for Human-Friendly Robots

Peters, J., Kober, J., Mülling, K., Krömer, O., Nguyen-Tuong, D., Wang, Z., Rodriguez Gomez, M., Grosse-Wentrup, M.

In pages: 1-2, 3rd Workshop for Young Researchers on Human-Friendly Robotics (HFR), October 2010 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery

Gomez Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A., Grosse-Wentrup, M.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2010), pages: 121-126, IEEE, Piscataway, NJ, USA, IEEE International Conference on Systems, Man and Cybernetics (SMC), October 2010 (inproceedings)

Abstract
Brain-Computer Interfaces (BCIs) in combination with robot-assisted physical therapy may become a valuable tool for neurorehabilitation of patients with severe hemiparetic syndromes due to cerebrovascular brain damage (stroke) and other neurological conditions. A key aspect of this approach is reestablishing the disrupted sensorimotor feedback loop, i.e., determining the intended movement using a BCI and helping a human with impaired motor function to move the arm using a robot. It has not been studied yet, however, how artificially closing the sensorimotor feedback loop affects the BCI decoding performance. In this article, we investigate this issue in six healthy subjects, and present evidence that haptic feedback facilitates the decoding of arm movement intention. The results provide evidence of the feasibility of future rehabilitative efforts combining robot-assisted physical therapy with BCIs.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning Probabilistic Discriminative Models of Grasp Affordances under Limited Supervision

Erkan, A., Kroemer, O., Detry, R., Altun, Y., Piater, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1586-1591, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
This paper addresses the problem of learning and efficiently representing discriminative probabilistic models of object-specific grasp affordances particularly when the number of labeled grasps is extremely limited. The proposed method does not require an explicit 3D model but rather learns an implicit manifold on which it defines a probability distribution over grasp affordances. We obtain hypothetical grasp configurations from visual descriptors that are associated with the contours of an object. While these hypothetical configurations are abundant, labeled configurations are very scarce as these are acquired via time-costly experiments carried out by the robot. Kernel logistic regression (KLR) via joint kernel maps is trained to map the hypothesis space of grasps into continuous class-conditional probability values indicating their achievability. We propose a soft-supervised extension of KLR and a framework to combine the merits of semi-supervised and active learning approaches to tackle the scarcity of labeled grasps. Experimental evaluation shows that combining active and semi-supervised learning is favorable in the existence of an oracle. Furthermore, semi-supervised learning outperforms supervised learning, particularly when the labeled data is very limited.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Discriminative frequent subgraph mining with optimality guarantees

Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H., Smola, A., Song, L., Yu, P., Yan, X., Borgwardt, K.

Journal of Statistical Analysis and Data Mining, 3(5):302–318, October 2010 (article)

Abstract
The goal of frequent subgraph mining is to detect subgraphs that frequently occur in a dataset of graphs. In classification settings, one is often interested in discovering discriminative frequent subgraphs, whose presence or absence is indicative of the class membership of a graph. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A biomimetic approach to robot table tennis

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1921-1926, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
Although human beings see and move slower than table tennis or baseball robots, they manage to outperform such robot systems. One important aspect of this better performance is the human movement generation. In this paper, we study trajectory generation for table tennis from a biomimetic point of view. Our focus lies on generating efficient stroke movements capable of mastering variations in the environmental conditions, such as changing ball speed, spin and position. We study table tennis from a human motor control point of view. To make headway towards this goal, we construct a trajectory generator for a single stroke using the discrete movement stages hypothesis and the virtual hitting point hypothesis to create a model that produces a human-like stroke movement. We verify the functionality of the trajectory generator for a single forehand stroke both in a simulation and using a real Barrett WAM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 15.18.17
Scene Representation and Object Grasping Using Active Vision

Gratal, X., Bohg, J., Björkman, M., Kragic, D.

In IROS’10 Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics, October 2010 (inproceedings)

Abstract
Object grasping and manipulation pose major challenges for perception and control and require rich interaction between these two fields. In this paper, we concentrate on the plethora of perceptual problems that have to be solved before a robot can be moved in a controlled way to pick up an object. A vision system is presented that integrates a number of different computational processes, e.g. attention, segmentation, recognition or reconstruction to incrementally build up a representation of the scene suitable for grasping and manipulation of objects. Our vision system is equipped with an active robotic head and a robot arm. This embodiment enables the robot to perform a number of different actions like saccading, fixating, and grasping. By applying these actions, the robot can incrementally build a scene representation and use it for interaction. We demonstrate our system in a scenario for picking up known objects from a table top. We also show the system’s extendibility towards grasping of unknown and familiar objects.

am

video pdf slides [BibTex]

video pdf slides [BibTex]


Thumb xl after250measurementprmgoodlinespec
Strategies for multi-modal scene exploration

Bohg, J., Johnson-Roberson, M., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 4509-4515, October 2010 (inproceedings)

Abstract
We propose a method for multi-modal scene exploration where initial object hypothesis formed by active visual segmentation are confirmed and augmented through haptic exploration with a robotic arm. We update the current belief about the state of the map with the detection results and predict yet unknown parts of the map with a Gaussian Process. We show that through the integration of different sensor modalities, we achieve a more complete scene model. We also show that the prediction of the scene structure leads to a valid scene representation even if the map is not fully traversed. Furthermore, we propose different exploration strategies and evaluate them both in simulation and on our robotic platform.

am

video pdf DOI Project Page [BibTex]

video pdf DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 23 at 01.22.09
Attention-based active 3D point cloud segmentation

Johnson-Roberson, M., Bohg, J., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1165-1170, October 2010 (inproceedings)

Abstract
In this paper we present a framework for the segmentation of multiple objects from a 3D point cloud. We extend traditional image segmentation techniques into a full 3D representation. The proposed technique relies on a state-of-the-art min-cut framework to perform a fully 3D global multi-class labeling in a principled manner. Thereby, we extend our previous work in which a single object was actively segmented from the background. We also examine several seeding methods to bootstrap the graphical model-based energy minimization and these methods are compared over challenging scenes. All results are generated on real-world data gathered with an active vision robotic head. We present quantitive results over aggregate sets as well as visual results on specific examples.

am

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Combining active learning and reactive control for robot grasping

Kroemer, O., Detry, R., Piater, J., Peters, J.

Robotics and Autonomous Systems, 58(9):1105-1116, September 2010 (article)

Abstract
Grasping an object is a task that inherently needs to be treated in a hybrid fashion. The system must decide both where and how to grasp the object. While selecting where to grasp requires learning about the object as a whole, the execution only needs to reactively adapt to the context close to the grasp’s location. We propose a hierarchical controller that reflects the structure of these two sub-problems, and attempts to learn solutions that work for both. A hybrid architecture is employed by the controller to make use of various machine learning methods that can cope with the large amount of uncertainty inherent to the task. The controller’s upper level selects where to grasp the object using a reinforcement learner, while the lower level comprises an imitation learner and a vision-based reactive controller to determine appropriate grasping motions. The resulting system is able to quickly learn good grasps of a novel object in an unstructured environment, by executing smooth reaching motions and preshapin g the hand depending on the object’s geometry. The system was evaluated both in simulation and on a real robot.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

Seldin, Y.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues. We derive a bound minimization algorithm and show that it provides good results in real-life problems and that the derived PAC-Bayesian bound is reasonably tight.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Weakly-Paired Maximum Covariance Analysis for Multimodal Dimensionality Reduction and Transfer Learning

Lampert, C., Kroemer, O.

In Computer Vision – ECCV 2010, pages: 566-579, (Editors: Daniilidis, K. , P. Maragos, N. Paragios), Springer, Berlin, Germany, 11th European Conference on Computer Vision, September 2010 (inproceedings)

Abstract
We study the problem of multimodal dimensionality reduction assuming that data samples can be missing at training time, and not all data modalities may be present at application time. Maximum covariance analysis, as a generalization of PCA, has many desirable properties, but its application to practical problems is limited by its need for perfectly paired data. We overcome this limitation by a latent variable approach that allows working with weakly paired data and is still able to efficiently process large datasets using standard numerical routines. The resulting weakly paired maximum covariance analysis often finds better representations than alternative methods, as we show in two exemplary tasks: texture discrimination and transfer learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Simple algorithmic modifications for improving blind steganalysis performance

Schwamberger, V., Franz, M.

In Proceedings of the 12th ACM workshop on Multimedia and Security (MM&Sec 2010), pages: 225-230, (Editors: Campisi, P. , J. Dittmann, S. Craver), ACM Press, New York, NY, USA, 12th ACM Workshop on Multimedia and Security (MM&Sec), September 2010 (inproceedings)

Abstract
Most current algorithms for blind steganalysis of images are based on a two-stages approach: First, features are extracted in order to reduce dimensionality and to highlight potential manipulations; second, a classifier trained on pairs of clean and stego images finds a decision rule for these features to detect stego images. Thereby, vector components might vary significantly in their values, hence normalization of the feature vectors is crucial. Furthermore, most classifiers contain free parameters, and an automatic model selection step has to be carried out for adapting these parameters. However, the commonly used cross-validation destroys some information needed by the classifier because of the arbitrary splitting of image pairs (stego and clean version) in the training set. In this paper, we propose simple modifications of normalization and for standard cross-validation. In our experiments, we show that these methods lead to a significant improvement of the standard blind steganalyzer of Lyu and Farid.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Nonparametric Regression between General Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

SIAM Journal on Imaging Sciences, 3(3):527-563, September 2010 (article)

Abstract
We study nonparametric regression between Riemannian manifolds based on regularized empirical risk minimization. Regularization functionals for mappings between manifolds should respect the geometry of input and output manifold and be independent of the chosen parametrization of the manifolds. We define and analyze the three most simple regularization functionals with these properties and present a rather general scheme for solving the resulting optimization problem. As application examples we discuss interpolation on the sphere, fingerprint processing, and correspondence computations between three-dimensional surfaces. We conclude with characterizing interesting and sometimes counterintuitive implications and new open problems that are specific to learning between Riemannian manifolds and are not encountered in multivariate regression in Euclidean space.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Semi-supervised Remote Sensing Image Classification via Maximum Entropy

Erkan, A., Camps-Valls, G., Altun, Y.

In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), pages: 313-318, IEEE, Piscataway, NJ, USA, 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), September 2010 (inproceedings)

Abstract
Remote sensing image segmentation requires multi-category classification typically with limited number of labeled training samples. While semi-supervised learning (SSL) has emerged as a sub-field of machine learning to tackle the scarcity of labeled samples, most SSL algorithms to date have had trade-offs in terms of scalability and/or applicability to multi-categorical data. In this paper, we evaluate semi-supervised logistic regression (SLR), a recent information theoretic semi-supervised algorithm, for remote sensing image classification problems. SLR is a probabilistic discriminative classifier and a specific instance of the generalized maximum entropy framework with a convex loss function. Moreover, the method is inherently multi-class and easy to implement. These characteristics make SLR a strong alternative to the widely used semi-supervised variants of SVM for the segmentation of remote sensing images. We demonstrate the competitiveness of SLR in multispectral, hyperspectral and radar image classifica tion.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
MLSP Competition, 2010: Description of first place method

Leiva, JM., Martens, SMM.

In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), pages: 112-113, IEEE, Piscataway, NJ, USA, 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), September 2010 (inproceedings)

Abstract
Our winning approach to the 2010 MLSP Competition is based on a generative method for P300-based BCI decoding, successfully applied to visual spellers. Here, generative has a double meaning. On the one hand, we work with a probability density model of the data given the target/non target labeling, as opposed to discriminative (e.g. SVM-based) methods. On the other hand, the natural consequence of this approach is a decoding based on comparing the observation to templates generated from the data.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Sparse nonnegative matrix approximation: new formulations and algorithms

Tandon, R., Sra, S.

(193), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We introduce several new formulations for sparse nonnegative matrix approximation. Subsequently, we solve these formulations by developing generic algorithms. Further, to help selecting a particular sparse formulation, we briefly discuss the interpretation of each formulation. Finally, preliminary experiments are presented to illustrate the behavior of our formulations and algorithms.

ei

PDF [BibTex]

PDF [BibTex]


no image
Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction via Incremental EM

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

In Proceedings of the 17th International Conference on Image Processing (ICIP 2010), pages: 3313-3316, IEEE, Piscataway, NJ, USA, 17th International Conference on Image Processing (ICIP), September 2010 (inproceedings)

Abstract
We formulate the multiframe blind deconvolution problem in an incremental expectation maximization (EM) framework. Beyond deconvolution, we show how to use the same framework to address: (i) super-resolution despite noise and unknown blurring; (ii) saturationcorrection of overexposed pixels that confound image restoration. The abundance of data allows us to address both of these without using explicit image or blur priors. The end result is a simple but effective algorithm with no hyperparameters. We apply this algorithm to real-world images from astronomy and to super resolution tasks: for both, our algorithm yields increased resolution and deconvolved images simultaneously.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models

Nickisch, H., Rasmussen, C.

In Pattern Recognition, pages: 271-282, (Editors: Goesele, M. , S. Roth, A. Kuijper, B. Schiele, K. Schindler), Springer, Berlin, Germany, 32nd Annual Symposium of the German Association for Pattern Recognition (DAGM), September 2010 (inproceedings)

Abstract
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Robust nonparametric detection of objects in noisy images

Langovoy, M., Wittich, O.

(2010-049), EURANDOM, Technische Universiteit Eindhoven, September 2010 (techreport)

Abstract
We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore im- portant connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a nite sample performance of our test.

ei

PDF [BibTex]

PDF [BibTex]


no image
A Nearest Neighbor Data Structure for Graphics Hardware

Cayton, L.

In Proceedings of the First International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (ADMS 2010), pages: 1-6, First International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (ADMS), September 2010 (inproceedings)

Abstract
Nearest neighbor search is a core computational task in database systems and throughout data analysis. It is also a major computational bottleneck, and hence an enormous body of research has been devoted to data structures and algorithms for accelerating the task. Recent advances in graphics hardware provide tantalizing speedups on a variety of tasks and suggest an alternate approach to the problem: simply run brute force search on a massively parallel sys- tem. In this paper we marry the approaches with a novel data structure that can effectively make use of parallel systems such as graphics cards. The architectural complexities of graphics hardware - the high degree of parallelism, the small amount of memory relative to instruction throughput, and the single instruction, multiple data design- present significant challenges for data structure design. Furthermore, the brute force approach applies perfectly to graphics hardware, leading one to question whether an intelligent algorithm or data structure can even hope to outperform this basic approach. Despite these challenges and misgivings, we demonstrate that our data structure - termed a Random Ball Cover - provides significant speedups over the GPU- based brute force approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Thumb xl screen shot 2012 12 01 at 2.37.12 pm
Visibility Maps for Improving Seam Carving

Mansfield, A., Gehler, P., Van Gool, L., Rother, C.

In Media Retargeting Workshop, European Conference on Computer Vision (ECCV), september 2010 (inproceedings)

ps

webpage pdf slides supplementary code [BibTex]

webpage pdf slides supplementary code [BibTex]


Thumb xl eigenclothingimagesmall2
A 2D human body model dressed in eigen clothing

Guan, P., Freifeld, O., Black, M. J.

In European Conf. on Computer Vision, (ECCV), pages: 285-298, Springer-Verlag, September 2010 (inproceedings)

Abstract
Detection, tracking, segmentation and pose estimation of people in monocular images are widely studied. Two-dimensional models of the human body are extensively used, however, they are typically fairly crude, representing the body either as a rough outline or in terms of articulated geometric primitives. We describe a new 2D model of the human body contour that combines an underlying naked body with a low-dimensional clothing model. The naked body is represented as a Contour Person that can take on a wide variety of poses and body shapes. Clothing is represented as a deformation from the underlying body contour. This deformation is learned from training examples using principal component analysis to produce eigen clothing. We find that the statistics of clothing deformations are skewed and we model the a priori probability of these deformations using a Beta distribution. The resulting generative model captures realistic human forms in monocular images and is used to infer 2D body shape and pose under clothing. We also use the coefficients of the eigen clothing to recognize different categories of clothing on dressed people. The method is evaluated quantitatively on synthetic and real images and achieves better accuracy than previous methods for estimating body shape under clothing.

ps

pdf data poster Project Page [BibTex]

pdf data poster Project Page [BibTex]


Thumb xl teaser eccvw
Analyzing and Evaluating Markerless Motion Tracking Using Inertial Sensors

Baak, A., Helten, T., Müller, M., Pons-Moll, G., Rosenhahn, B., Seidel, H.

In European Conference on Computer Vision (ECCV Workshops), September 2010 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, August 2010 (techreport)

Abstract
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the SLM posterior covariance, unrelated to the density's mode. We propose a scalable algorithmic framework, with which SLM posteriors over full, high-resolution images can be approximated for the first time, solving a variational optimization problem which is convex iff posterior mode finding is convex. These methods successfully drive the optimization of sampling trajectories for real-world magnetic resonance imaging through Bayesian experimental design, which has not been attempted before. Our methodology provides new insight into similarities and differences between sparse reconstruction and approximate Bayesian inference, and has important implications for compressive sensing of real-world images.

ei

Web [BibTex]