Header logo is


2013


Thumb xl thumb
Branch&Rank for Efficient Object Detection

Lehmann, A., Gehler, P., VanGool, L.

International Journal of Computer Vision, Springer, December 2013 (article)

Abstract
Ranking hypothesis sets is a powerful concept for efficient object detection. In this work, we propose a branch&rank scheme that detects objects with often less than 100 ranking operations. This efficiency enables the use of strong and also costly classifiers like non-linear SVMs with RBF-TeX kernels. We thereby relieve an inherent limitation of branch&bound methods as bounds are often not tight enough to be effective in practice. Our approach features three key components: a ranking function that operates on sets of hypotheses and a grouping of these into different tasks. Detection efficiency results from adaptively sub-dividing the object search space into decreasingly smaller sets. This is inherited from branch&bound, while the ranking function supersedes a tight bound which is often unavailable (except for rather limited function classes). The grouping makes the system effective: it separates image classification from object recognition, yet combines them in a single formulation, phrased as a structured SVM problem. A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection. We use the VOC’07 dataset to demonstrate the algorithmic properties of branch&rank.

ps

pdf link (url) [BibTex]

2013


pdf link (url) [BibTex]


no image
A Practical System For Recording Instrument Interactions During Live Robotic Surgery

McMahan, W., Gomez, E. D., Chen, L., Bark, K., Nappo, J. C., Koch, E. I., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

Journal of Robotic Surgery, 7(4):351-358, 2013 (article)

hi

[BibTex]

[BibTex]


Thumb xl tro
Extracting Postural Synergies for Robotic Grasping

Romero, J., Feix, T., Ek, C., Kjellstrom, H., Kragic, D.

Robotics, IEEE Transactions on, 29(6):1342-1352, December 2013 (article)

ps

[BibTex]

[BibTex]


Thumb xl pic cviu13
Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey

Wang, C., Komodakis, N., Paragios, N.

Computer Vision and Image Understanding (CVIU), 117(11):1610-1627, November 2013 (article)

Abstract
In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision and image understanding, with respect to the modeling, the inference and the learning. While MRFs were introduced into the computer vision field about two decades ago, they started to become a ubiquitous tool for solving visual perception problems around the turn of the millennium following the emergence of efficient inference methods. During the past decade, a variety of MRF models as well as inference and learning methods have been developed for addressing numerous low, mid and high-level vision problems. While most of the literature concerns pairwise MRFs, in recent years we have also witnessed significant progress in higher-order MRFs, which substantially enhances the expressiveness of graph-based models and expands the domain of solvable problems. This survey provides a compact and informative summary of the major literature in this research topic.

ps

Publishers site pdf [BibTex]

Publishers site pdf [BibTex]


Thumb xl multi modal
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing

Illonen, J., Bohg, J., Kyrki, V.

The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated. A grasp is executed on the object with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the initial full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
Multi-robot cooperative spherical-object tracking in 3D space based on particle filters

Ahmad, A., Lima, P.

Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (article)

Abstract
This article presents a cooperative approach for tracking a moving spherical object in 3D space by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball, including comparison with ground truth.

ps

DOI [BibTex]

DOI [BibTex]


Thumb xl implied flow whue
Puppet Flow

Zuffi, S., Black, M. J.

(7), Max Planck Institute for Intelligent Systems, October 2013 (techreport)

Abstract
We introduce Puppet Flow (PF), a layered model describing the optical flow of a person in a video sequence. We consider video frames composed by two layers: a foreground layer corresponding to a person, and background. We model the background as an affine flow field. The foreground layer, being a moving person, requires reasoning about the articulated nature of the human body. We thus represent the foreground layer with the Deformable Structures model (DS), a parametrized 2D part-based human body representation. We call the motion field defined through articulated motion and deformation of the DS model, a Puppet Flow. By exploiting the DS representation, Puppet Flow is a parametrized optical flow field, where parameters are the person's pose, gender and body shape.

ps

pdf Project Page Project Page [BibTex]

pdf Project Page Project Page [BibTex]


no image
D2.1.4 RoCKIn@Work - Innovation in Mobile Industrial Manipulation Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Work competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Work competition, which served as inspiration for RoCKIn@Work. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

ps

[BibTex]

[BibTex]


no image
D2.1.1 RoCKIn@Home - A Competition for Domestic Service Robots Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Home competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Home competition, which served as inspiration for RoCKIn@Home. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

ps

[BibTex]

[BibTex]


no image
Sisyphus cooling in a continuously loaded trap

Volchkov, V., Rührig, J., Pfau, T., Griesmaier, A.

New Journal of Physics, 15, pages: 093012, IOP Publishing and Deutsche Physikalische Gesellschaft, September 2013 (article)

Abstract
We demonstrate continuous Sisyphus cooling combined with a continuous loading mechanism used to efficiently slow down and accumulate chromium atoms from a guided beam. While the loading itself is based on a single slowing step, applying a radio frequency field forces the atoms to repeat this step many times resulting in a so-called Sisyphus cooling. This extension allows efficient loading and cooling of atoms from a wide range of initial beam conditions. We study the interplay of the continuous loading and simultaneous Sisyphus cooling in different density regimes. In the case of a low density flux we observe a differential gain in phase-space density of nine orders of magnitude. This makes the presented scheme an ideal tool for reaching collisional densities enabling evaporative cooling—in spite of unfavourable initial conditions.

sf

DOI [BibTex]

DOI [BibTex]


Thumb xl ijrr
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Vibrotactile Display: Perception, Technology, and Applications

Choi, S., Kuchenbecker, K. J.

Proceedings of the IEEE, 101(9):2093-2104, sep 2013 (article)

hi

[BibTex]

[BibTex]


no image
D1.1 Specification of General Features of Scenarios and Robots for Benchmarking Through Competitions

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schiaffonati, V., Schneider, S.

(FP7-ICT-601012 Revision 1.0), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, July 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics and the innovation potential of robotics applications. From these objectives several requirements for the work performed in RoCKIn can be derived: The RoCKIn competitions must start from convincing, easy-to-communicate user stories, that catch the attention of relevant stakeholders, the media, and the crowd. The user stories play the role of a mid- to long-term vision for a competition. Preferably, the user stories address economic, societal, or environmental problems. The RoCKIn competitions must pose open scientific challenges of interest to sufficiently many researchers to attract existing and new teams of robotics researchers for participation in the competition. The competitions need to promise some suitable reward, such as recognition in the scientific community, publicity for a team’s work, awards, or prize money, to justify the effort a team puts into the development of a competition entry. The competitions should be designed in such a way that they reward general, scientifically sound solutions to the challenge problems; such general solutions should score better than approaches that work only in narrowly defined contexts and are considred over-engineered. The challenges motivating the RoCKIn competitions must be broken down into suitable intermediate goals that can be reached with a limited team effort until the next competition and the project duration. The RoCKIn competitions must be well-defined and well-designed, with comprehensive rule books and instructions for the participants in order to guarantee a fair competition. The RoCKIn competitions must integrate competitions with benchmarking in order to provide comprehensive feedback for the teams about the suitability of particular functional modules, their overall architecture, and system integration. This document takes the first steps towards the RoCKIn goals. After outlining our approach, we present several user stories for further discussion within the community. The main objectives of this document are to identify and document relevant scenario features and the tasks and functionalities subject for benchmarking in the competitions.

ps

[BibTex]

[BibTex]


no image
SocRob-MSL 2013 Team Description Paper for Middle Sized League

Messias, J., Ahmad, A., Reis, J., Serafim, M., Lima, P.

17th Annual RoboCup International Symposium 2013, July 2013 (techreport)

Abstract
This paper describes the status of the SocRob MSL robotic soccer team as required by the RoboCup 2013 qualification procedures. The team’s latest scientific and technical developments, since its last participation in RoboCup MSL, include further advances in cooperative perception; novel communication methods for distributed robotics; progressive deployment of the ROS middleware; improved localization through feature tracking and Mixture MCL; novel planning methods based on Petri nets and decision-theoretic frameworks; and hardware developments in ball-handling/kicking devices.

ps

link (url) [BibTex]

link (url) [BibTex]


Thumb xl teaser
Visualizing dimensionality reduction of systems biology data

Lehrmann, A. M., Huber, M., Polatkan, A. C., Pritzkau, A., Nieselt, K.

Data Mining and Knowledge Discovery, 1(27):146-165, Springer, July 2013 (article)

ps

pdf SpRay [BibTex]

pdf SpRay [BibTex]


no image
Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System

Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.

Investigative Radiology, 48(5):247-255, May 2013 (article)

ei

Web [BibTex]

Web [BibTex]


Thumb xl submodularity nips
Learning and Optimization with Submodular Functions

Sankaran, B., Ghazvininejad, M., He, X., Kale, D., Cohen, L.

ArXiv, May 2013 (techreport)

Abstract
In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.

am

arxiv link (url) [BibTex]

arxiv link (url) [BibTex]


no image
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals

Lemeire, J., Janzing, D.

Minds and Machines, 23(2):227-249, May 2013 (article)

Abstract
Independence of Conditionals (IC) has recently been proposed as a basic rule for causal structure learning. If a Bayesian network represents the causal structure, its Conditional Probability Distributions (CPDs) should be algorithmically independent. In this paper we compare IC with causal faithfulness (FF), stating that only those conditional independences that are implied by the causal Markov condition hold true. The latter is a basic postulate in common approaches to causal structure learning. The common spirit of FF and IC is to reject causal graphs for which the joint distribution looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects models just because one of the CPDs is simple, for instance if the CPD describes a deterministic relation. IC does not behave in this undesirable way. It only rejects a model when there is a non-generic relation between different CPDs although each CPD looks generic when considered separately. Moreover, it detects relations between CPDs that cannot be captured by conditional independences. IC therefore helps in distinguishing causal graphs that induce the same conditional independences (i.e., they belong to the same Markov equivalence class). The usual justification for FF implicitly assumes a prior that is a probability density on the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero probability to those points in parameter space that have a finite description. In this way, it favours simple CPDs, and therefore respects Occam’s razor. Since Kolmogorov complexity is uncomputable, IC is not directly applicable in practice. We argue that it is nevertheless helpful, since it has already served as inspiration and justification for novel causal inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Thumb xl jmiv2012 mut
Unscented Kalman Filtering on Riemannian Manifolds

Soren Hauberg, Francois Lauze, Kim S. Pedersen

Journal of Mathematical Imaging and Vision, 46(1):103-120, Springer Netherlands, May 2013 (article)

ps

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
ROS Open-source Audio Recognizer: ROAR Environmental Sound Detection Tools for Robot Programming

Romano, J. M., Brindza, J. P., Kuchenbecker, K. J.

Autonomous Robots, 34(3):207-215, April 2013 (article)

hi

[BibTex]

[BibTex]


no image
What can neurons do for their brain? Communicate selectivity with bursts

Balduzzi, D., Tononi, G.

Theory in Biosciences , 132(1):27-39, Springer, March 2013 (article)

Abstract
Neurons deep in cortex interact with the environment extremely indirectly; the spikes they receive and produce are pre- and post-processed by millions of other neurons. This paper proposes two information-theoretic constraints guiding the production of spikes, that help ensure bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons should emphasize selective responses with bursts. Second, neurons should propagate selective inputs by burst-firing in response to them. We show the constraints are necessary for bursts to dominate information-transfer within cortex, thereby providing a substrate allowing neurons to distribute credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best performed offline during sleep.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Apprenticeship Learning with Few Examples

Boularias, A., Chaib-draa, B.

Neurocomputing, 104, pages: 83-96, March 2013 (article)

Abstract
We consider the problem of imitation learning when the examples, provided by an expert human, are scarce. Apprenticeship learning via inverse reinforcement learning provides an efficient tool for generalizing the examples, based on the assumption that the expert's policy maximizes a value function, which is a linear combination of state and action features. Most apprenticeship learning algorithms use only simple empirical averages of the features in the demonstrations as a statistics of the expert's policy. However, this method is efficient only when the number of examples is sufficiently large to cover most of the states, or the dynamics of the system is nearly deterministic. In this paper, we show that the quality of the learned policies is sensitive to the error in estimating the averages of the features when the dynamics of the system is stochastic. To reduce this error, we introduce two new approaches for bootstrapping the demonstrations by assuming that the expert is near-optimal and the dynamics of the system is known. In the first approach, the expert's examples are used to learn a reward function and to generate furthermore examples from the corresponding optimal policy. The second approach uses a transfer technique, known as graph homomorphism, in order to generalize the expert's actions to unvisited regions of the state space. Empirical results on simulated robot navigation problems show that our approach is able to learn sufficiently good policies from a significantly small number of examples.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Regional effects of magnetization dispersion on quantitative perfusion imaging for pulsed and continuous arterial spin labeling

Cavusoglu, M., Pohmann, R., Burger, H. C., Uludag, K.

Magnetic Resonance in Medicine, 69(2):524-530, Febuary 2013 (article)

Abstract
Most experiments assume a global transit delay time with blood flowing from the tagging region to the imaging slice in plug flow without any dispersion of the magnetization. However, because of cardiac pulsation, nonuniform cross-sectional flow profile, and complex vessel networks, the transit delay time is not a single value but follows a distribution. In this study, we explored the regional effects of magnetization dispersion on quantitative perfusion imaging for varying transit times within a very large interval from the direct comparison of pulsed, pseudo-continuous, and dual-coil continuous arterial spin labeling encoding schemes. Longer distances between tagging and imaging region typically used for continuous tagging schemes enhance the regional bias on the quantitative cerebral blood flow measurement causing an underestimation up to 37% when plug flow is assumed as in the standard model.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The multivariate Watson distribution: Maximum-likelihood estimation and other aspects

Sra, S., Karp, D.

Journal of Multivariate Analysis, 114, pages: 256-269, February 2013 (article)

Abstract
This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where View the MathML source are equivalent), for high-dimensions using them can be difficult—largely because for Watson distributions even basic tasks such as maximum-likelihood are numerically challenging. To tackle the numerical difficulties some approximations have been derived. But these are either grossly inaccurate in high-dimensions [K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when reasonably accurate [A. Bijral, M. Breitenbach, G.Z. Grudic, Mixture of Watson distributions: a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics, AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification. We derive new approximations to the maximum-likelihood estimates; our approximations are theoretically well-defined, numerically accurate, and easy to compute. We build on our parameter estimation and discuss mixture-modelling with Watson distributions; here we uncover a hitherto unknown connection to the “diametrical clustering” algorithm of Dhillon et al. [I.S. Dhillon, E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clusters, Bioinformatics 19 (13) (2003) 1612–1619].

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
In Vivo Validation of a System for Haptic Feedback of Tool Vibrations in Robotic Surgery

Bark, K., McMahan, W., Remington, A., Gewirtz, J., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

Surgical Endoscopy, 27(2):656-664, February 2013, dynamic article (paper plus video), available at \href{http://www.springerlink.com/content/417j532708417342/}{http://www.springerlink.com/content/417j532708417342/} (article)

hi

[BibTex]

[BibTex]


no image
How the result of graph clustering methods depends on the construction of the graph

Maier, M., von Luxburg, U., Hein, M.

ESAIM: Probability & Statistics, 17, pages: 370-418, January 2013 (article)

Abstract
We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one rst has to construct a graph on the data points and then apply a graph clustering algorithm to nd a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) in uences the outcome of the nal clustering result. To this end we study the convergence of cluster quality measures such as the normalized cut or the Cheeger cut on various kinds of random geometric graphs as the sample size tends to in nity. It turns out that the limit values of the same objective function are systematically di erent on di erent types of graphs. This implies that clustering results systematically depend on the graph and can be very di erent for di erent types of graph. We provide examples to illustrate the implications on spectral clustering.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Explicit eigenvalues of certain scaled trigonometric matrices

Sra, S.

Linear Algebra and its Applications, 438(1):173-181, January 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
How Sensitive Is the Human Visual System to the Local Statistics of Natural Images?

Gerhard, H., Wichmann, F., Bethge, M.

PLoS Computational Biology, 9(1):e1002873, January 2013 (article)

Abstract
Several aspects of primate visual physiology have been identified as adaptations to local regularities of natural images. However, much less work has measured visual sensitivity to local natural image regularities. Most previous work focuses on global perception of large images and shows that observers are more sensitive to visual information when image properties resemble those of natural images. In this work we measure human sensitivity to local natural image regularities using stimuli generated by patch-based probabilistic natural image models that have been related to primate visual physiology. We find that human observers can learn to discriminate the statistical regularities of natural image patches from those represented by current natural image models after very few exposures and that discriminability depends on the degree of regularities captured by the model. The quick learning we observed suggests that the human visual system is biased for processing natural images, even at very fine spatial scales, and that it has a surprisingly large knowledge of the regularities in natural images, at least in comparison to the state-of-the-art statistical models of natural images.

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl secretstr
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them

Sun, D., Roth, S., Black, M. J.

(CS-10-03), Brown University, Department of Computer Science, January 2013 (techreport)

ps

pdf [BibTex]

pdf [BibTex]


no image
Perception of Springs with Visual and Proprioceptive Motion Cues: Implications for Prosthetics

Gurari, N., Kuchenbecker, K. J., Okamura, A. M.

IEEE Transactions on Human-Machine Systems, 43, pages: 102-114, January 2013, \href{http://www.youtube.com/watch?v=DBRw87Wk29E\&feature=youtu.be}{Video} (article)

hi

[BibTex]

[BibTex]


no image
A neural population model for visual pattern detection

Goris, R., Putzeys, T., Wagemans, J., Wichmann, F.

Psychological Review, 120(3):472–496, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Accurate indel prediction using paired-end short reads

Grimm, D., Hagmann, J., Koenig, D., Weigel, D., Borgwardt, KM.

BMC Genomics, 14(132), 2013 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D., Chickering, D., Portugualy, E., Ray, D., Simard, P., Snelson, E.

Journal of Machine Learning Research, 14, pages: 3207-3260, 2013 (article)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
When luminance increment thresholds depend on apparent lightness

Maertens, M., Wichmann, F.

Journal of Vision, 13(6):1-11, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Efficient network-guided multi-locus association mapping with graph cuts

Azencott, C., Grimm, D., Sugiyama, M., Kawahara, Y., Borgwardt, K.

Bioinformatics, 29(13):i171-i179, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantifying causal influences

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.

Annals of Statistics, 41(5):2324-2358, 2013 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Probabilistic movement modeling for intention inference in human-robot interaction

Wang, Z., Mülling, K., Deisenroth, M., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.

International Journal of Robotics Research, 32(7):841-858, 2013 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine (MRM), 70(6):1608–1618, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Modeling fixation locations using spatial point processes

Barthelmé, S., Trukenbrod, H., Engbert, R., Wichmann, F.

Journal of Vision, 13(12):1-34, 2013 (article)

Abstract
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A probabilistic model for secondary structure prediction from protein chemical shifts

Mechelke, M., Habeck, M.

Proteins: Structure, Function, and Bioinformatics, 81(6):984–993, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Climate Extremes and the Carbon Cycle

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M., Seneviratne, S., Zscheischler, J., Beer, C., Buchmann, N., Frank, D., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M.

Nature, 500, pages: 287-295, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Identification of stimulus cues in narrow-band tone-in-noise detection using sparse observer models

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 134(1):447-463, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Model-based Imitation Learning

Englert, P., Paraschos, A., Peters, J., Deisenroth, M.

Adaptive Behavior Journal, 21(5):388-403, 2013 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Metabolic cost as an organizing principle for cooperative learning

Balduzzi, D., Ortega, P., Besserve, M.

Advances in Complex Systems, 16(02n03):1350012, 2013 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MR-based PET Attenuation Correction for PET/MR Imaging

Bezrukov, I., Mantlik, F., Schmidt, H., Schölkopf, B., Pichler, B.

Seminars in Nuclear Medicine, 43(1):45-59, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
MR-based Attenuation Correction Methods for Improved PET Quantification in Lesions within Bone and Susceptibility Artifact Regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 54(10):1768-1774, 2013 (article)

Abstract
Hybrid PET/MR systems have recently entered clinical practice. Thus, the accuracy of MR-based attenuation correction in simultaneously acquired data can now be investigated. We assessed the accuracy of 4 methods of MR-based attenuation correction in lesions within soft tissue, bone, and MR susceptibility artifacts: 2 segmentation-based methods (SEG1, provided by the manufacturer, and SEG2, a method with atlas-based susceptibility artifact correction); an atlas- and pattern recognition–based method (AT&PR), which also used artifact correction; and a new method combining AT&PR and SEG2 (SEG2wBONE). Methods: Attenuation maps were calculated for the PET/MR datasets of 10 patients acquired on a whole-body PET/MR system, allowing for simultaneous acquisition of PET and MR data. Eighty percent iso-contour volumes of interest were placed on lesions in soft tissue (n = 21), in bone (n = 20), near bone (n = 19), and within or near MR susceptibility artifacts (n = 9). Relative mean volume-of-interest differences were calculated with CT-based attenuation correction as a reference. Results: For soft-tissue lesions, none of the methods revealed a significant difference in PET standardized uptake value relative to CT-based attenuation correction (SEG1, −2.6% ± 5.8%; SEG2, −1.6% ± 4.9%; AT&PR, −4.7% ± 6.5%; SEG2wBONE, 0.2% ± 5.3%). For bone lesions, underestimation of PET standardized uptake values was found for all methods, with minimized error for the atlas-based approaches (SEG1, −16.1% ± 9.7%; SEG2, −11.0% ± 6.7%; AT&PR, −6.6% ± 5.0%; SEG2wBONE, −4.7% ± 4.4%). For lesions near bone, underestimations of lower magnitude were observed (SEG1, −12.0% ± 7.4%; SEG2, −9.2% ± 6.5%; AT&PR, −4.6% ± 7.8%; SEG2wBONE, −4.2% ± 6.2%). For lesions affected by MR susceptibility artifacts, quantification errors could be reduced using the atlas-based artifact correction (SEG1, −54.0% ± 38.4%; SEG2, −15.0% ± 12.2%; AT&PR, −4.1% ± 11.2%; SEG2wBONE, 0.6% ± 11.1%). Conclusion: For soft-tissue lesions, none of the evaluated methods showed statistically significant errors. For bone lesions, significant underestimations of −16% and −11% occurred for methods in which bone tissue was ignored (SEG1 and SEG2). In the present attenuation correction schemes, uncorrected MR susceptibility artifacts typically result in reduced attenuation values, potentially leading to highly reduced PET standardized uptake values, rendering lesions indistinguishable from background. While AT&PR and SEG2wBONE show accurate results in both soft tissue and bone, SEG2wBONE uses a two-step approach for tissue classification, which increases the robustness of prediction and can be applied retrospectively if more precision in bone areas is needed.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning output kernels for multi-task problems

Dinuzzo, F.

Neurocomputing, 118, pages: 119-126, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Analytical probabilistic modeling for radiation therapy treatment planning

Bangert, M., Hennig, P., Oelfke, U.

Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Imaging Findings and Therapy Response Monitoring in Chronic Sclerodermatous Graft-Versus-Host Disease: Preliminary Data of a Simultaneous PET/MRI Approach

Sauter, A., Schmidt, H., Mantlik, F., Kolb, A., Federmann, B., Pfannenberg, C., Reimold, M., Pichler, B., Bethge, W., Horger, M.

Clinical Nuclear Medicine, 38(8):e309-e317, 2013 (article)

Abstract
PURPOSE: Our objective was a multifunctional imaging approach of chronic sclerodermatous graft-versus-host disease (ScGVHD) and its course during therapy using PET/MRI. METHODS: We performed partial-body PET/CT and PET/MRI of the calf in 6 consecutively recruited patients presenting with severe ScGVHD. The patients were treated with different immunosuppressive regimens and supportive therapies. PET/CT scanning started 60.5 +/- 3.3 minutes, PET/MRI imaging 139.5 +/- 16.7 minutes after F-FDG application. MRI acquisition included T1- (precontrast and postcontrast) and T2-weighted sequences. SUVmean, T1 contrast enhancement, and T2 signal intensity from region-of-interest analysis were calculated for different fascial and muscular compartments. In addition, musculoskeletal MRI findings and the modified Rodnan skin score were assessed. All patients underwent imaging follow-up. RESULTS: At baseline PET/MRI, ScGVHD-related musculoskeletal abnormalities consisted of increased signal and/or thickening of involved anatomical structures on T2-weighted and T1 postcontrast images as well as an increased FDG uptake. At follow-up, ScGVHD-related imaging findings decreased (SUVmean n = 4, mean T1 contrast enhancement n = 5, mean T2 signal intensity n = 3) or progressed (SUVmean n = 3, mean T1 contrast enhancement n = 2, mean T2 signal intensity n = 4). Clinically modified Rodnan skin score improved for 5 follow-ups and progressed for 2. SUVmean values correlated between PET/CT and PET/MRI acquisition (r = 0.660, P = 0.014), T1 contrast enhancement, and T2 signal (r = 0.668, P = 0.012), but not between the SUVmean values and the MRI parameters. CONCLUSIONS: PET/MRI as a combined morphological and functional technique seems to assess the inflammatory processes from different points of view and provides therefore in part complementary information

ei

Web [BibTex]

Web [BibTex]