Header logo is


2015


Thumb xl screen shot 2015 09 09 at 12.09.20
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

pi

DOI Project Page [BibTex]

2015


DOI Project Page [BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data

O’Donnell, L. J., Schultz, T.

In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

ei

[BibTex]

[BibTex]


no image
Perception of Deformable Objects and Compliant Manipulation for Service Robots

Stueckler, J., Behnke, S.

In Soft Robotics: From Theory to Applications, Springer, 2015 (inbook)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl tacit
Tacit Learning for Emergence of Task-Related Behaviour through Signal Accumulation

Berenz, V., Alnajjar, F., Hayashibe, M., Shimoda, S.

In Emergent Trends in Robotics and Intelligent Systems: Where is the Role of Intelligent Technologies in the Next Generation of Robots?, pages: 31-38, Springer International Publishing, Cham, 2015 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Annales des Concours 2015 PC Mathématiques, Informatique

Batog, G., Dumont, J., Puyhaubert, V.

In corrigés des problèmes posés aux concours CCP, Centrale/Supélec, Mines/Ponts, X/ENS, 2015 (inbook)

H&K Éditions [BibTex]

H&K Éditions [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

am

[BibTex]

[BibTex]

2008


no image
New Frontiers in Characterizing Structure and Dynamics by NMR

Nilges, M., Markwick, P., Malliavin, TE., Rieping, W., Habeck, M.

In Computational Structural Biology: Methods and Applications, pages: 655-680, (Editors: Schwede, T. , M. C. Peitsch), World Scientific, New Jersey, NJ, USA, May 2008 (inbook)

Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both the structure and the dynamics of biological macromolecule in solution. Despite the maturity of the NMR method for structure determination, its application faces a number of challenges. The method is limited to systems of relatively small molecular mass, data collection times are long, data analysis remains a lengthy procedure, and it is difficult to evaluate the quality of the final structures. The last years have seen significant advances in experimental techniques to overcome or reduce some limitations. The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time–scales from picoseconds to seconds. NMR is unique in its ability to obtain dynamic information on an atomic scale. The experimental information on structure and dynamics is intricately mixed. It is however difficult to unite both structural and dynamical information into one consistent model, and protocols for the determination of structure and dynamics are performed independently. This chapter deals with the challenges posed by the interpretation of NMR data on structure and dynamics. We will first relate the standard structure calculation methods to Bayesian probability theory. We will then briefly describe the advantages of a fully Bayesian treatment of structure calculation. Then, we will illustrate the advantages of using Bayesian reasoning at least partly in standard structure calculations. The final part will be devoted to interpretation of experimental data on dynamics.

ei

Web [BibTex]

2008


Web [BibTex]


no image
Measurement-Based Modeling for Haptic Rendering

Okamura, A. M., Kuchenbecker, K. J., Mahvash, M.

In Haptic Rendering: Algorithms and Applications, pages: 443-467, 21, A. K. Peters, May 2008 (incollection)

hi

[BibTex]

[BibTex]


no image
A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs

Franz, MO., Stürzl, W., Reichardt, W., Mallot, HA.

In Robotics and Cognitive Approaches to Spatial Mapping, pages: 297-314, Springer Tracts in Advanced Robotics ; 38, (Editors: Jefferies, M.E. , W.-K. Yeap), Springer, Berlin, Germany, 2008 (inbook)

Abstract
Complex navigation behaviour (way-finding) involves recognizing several places and encoding a spatial relationship between them. Way-finding skills can be classified into a hierarchy according to the complexity of the tasks that can be performed [8]. The most basic form of way-finding is route navigation, followed by topological navigation where several routes are integrated into a graph-like representation. The highest level, survey navigation, is reached when this graph can be embedded into a common reference frame. In this chapter, we present the building blocks for a biomimetic robot navigation system that encompasses all levels of this hierarchy. As a local navigation method, we use scene-based homing. In this scheme, a goal location is characterized either by a panoramic snapshot of the light intensities as seen from the place, or by a record of the distances to the surrounding objects. The goal is found by moving in the direction that minimizes the discrepancy between the recorded intensities or distances and the current sensory input. For learning routes, the robot selects distinct views during exploration that are close enough to be reached by snapshot-based homing. When it encounters already visited places during route learning, it connects the routes and thus forms a topological representation of its environment termed a view graph. The final stage, survey navigation, is achieved by a graph embedding procedure which complements the topologic information of the view graph with odometric position estimates. Calculation of the graph embedding is done with a modified multidimensional scaling algorithm which makes use of distances and angles between nodes.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Hydrogen adsorption (Carbon, Zeolites, Nanocubes)

Hirscher, M., Panella, B.

In Hydrogen as a Future Energy Carrier, pages: 173-188, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 (incollection)

mms

[BibTex]

[BibTex]


no image
Ma\ssgeschneiderte Speichermaterialien

Hirscher, M.

In Von Brennstoffzellen bis Leuchtdioden (Energie und Chemie - Ein Bündnis für die Zukunft), pages: 31-33, Deutsche Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt am Main, 2008 (incollection)

mms

[BibTex]

[BibTex]

2005


no image
Support Vector Machines and Kernel Algorithms

Schölkopf, B., Smola, A.

In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)

ei

[BibTex]

2005


[BibTex]


no image
Visual perception I: Basic principles

Wagemans, J., Wichmann, F., de Beeck, H.

In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)

ei

[BibTex]

[BibTex]


no image
Geckobot and waalbot: Small-scale wall climbing robots

Unver, O., Murphy, M., Sitti, M.

In Infotech@ Aerospace, pages: 6940, 2005 (incollection)

pi

[BibTex]

[BibTex]

2002


Thumb xl bildschirmfoto 2013 01 15 um 10.33.56
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

ps

pdf [BibTex]

2002


pdf [BibTex]


no image
Learning robot control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 983-987, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on learning control in robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Arm and hand movement control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 110-113, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on computational and biological research on arm and hand control.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Ion Channeling in Quasicrystals

Plachke, D., Carstanjen, H. D.

In Quasicrystals. An Introduction to Structure, Physical Properties and Applications, 55, pages: 280-304, Springer Series in Materials Science, Springer, Berlin [et al.], 2002 (incollection)

mms

[BibTex]

[BibTex]