Header logo is


2015


Thumb xl zhou
Exploiting Object Similarity in 3D Reconstruction

Zhou, C., Güney, F., Wang, Y., Geiger, A.

In International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Despite recent progress, reconstructing outdoor scenes in 3D from movable platforms remains a highly difficult endeavor. Challenges include low frame rates, occlusions, large distortions and difficult lighting conditions. In this paper, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by locating objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows us to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. We evaluate our approach with respect to LIDAR ground truth on a novel challenging suburban dataset and show its advantages over the state-of-the-art.

avg ps

pdf suppmat [BibTex]

2015


pdf suppmat [BibTex]


Thumb xl philip
FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

Lenz, P., Geiger, A., Urtasun, R.

In International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrary length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers.

avg ps

pdf suppmat video project [BibTex]

pdf suppmat video project [BibTex]


Thumb xl intrinsicdepth teaser1
Intrinsic Depth: Improving Depth Transfer with Intrinsic Images

Kong, N., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3514-3522, International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
We formulate the estimation of dense depth maps from video sequences as a problem of intrinsic image estimation. Our approach synergistically integrates the estimation of multiple intrinsic images including depth, albedo, shading, optical flow, and surface contours. We build upon an example-based framework for depth estimation that uses label transfer from a database of RGB and depth pairs. We combine this with a method that extracts consistent albedo and shading from video. In contrast to raw RGB values, albedo and shading provide a richer, more physical, foundation for depth transfer. Additionally we train a new contour detector to predict surface boundaries from albedo, shading, and pixel values and use this to improve the estimation of depth boundaries. We also integrate sparse structure from motion with our method to improve the metric accuracy of the estimated depth maps. We evaluate our Intrinsic Depth method quantitatively by estimating depth from videos in the NYU RGB-D and SUN3D datasets. We find that combining the estimation of multiple intrinsic images improves depth estimation relative to the baseline method.

ps

pdf suppmat YouTube official video poster Project Page Project Page [BibTex]

pdf suppmat YouTube official video poster Project Page Project Page [BibTex]


Thumb xl bogo iccv2015 teaser
Detailed Full-Body Reconstructions of Moving People from Monocular RGB-D Sequences

Bogo, F., Black, M. J., Loper, M., Romero, J.

In International Conference on Computer Vision (ICCV), pages: 2300-2308, December 2015 (inproceedings)

Abstract
We accurately estimate the 3D geometry and appearance of the human body from a monocular RGB-D sequence of a user moving freely in front of the sensor. Range data in each frame is first brought into alignment with a multi-resolution 3D body model in a coarse-to-fine process. The method then uses geometry and image texture over time to obtain accurate shape, pose, and appearance information despite unconstrained motion, partial views, varying resolution, occlusion, and soft tissue deformation. Our novel body model has variable shape detail, allowing it to capture faces with a high-resolution deformable head model and body shape with lower-resolution. Finally we combine range data from an entire sequence to estimate a high-resolution displacement map that captures fine shape details. We compare our recovered models with high-resolution scans from a professional system and with avatars created by a commercial product. We extract accurate 3D avatars from challenging motion sequences and even capture soft tissue dynamics.

ps

Video pdf Project Page Project Page [BibTex]

Video pdf Project Page Project Page [BibTex]


Thumb xl thumb3
3D Object Reconstruction from Hand-Object Interactions

Tzionas, D., Gall, J.

In International Conference on Computer Vision (ICCV), pages: 729-737, International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Recent advances have enabled 3d object reconstruction approaches using a single off-the-shelf RGB-D camera. Although these approaches are successful for a wide range of object classes, they rely on stable and distinctive geometric or texture features. Many objects like mechanical parts, toys, household or decorative articles, however, are textureless and characterized by minimalistic shapes that are simple and symmetric. Existing in-hand scanning systems and 3d reconstruction techniques fail for such symmetric objects in the absence of highly distinctive features. In this work, we show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of even featureless and highly symmetric objects and we present an approach that fuses the rich additional information of hands into a 3d reconstruction pipeline, significantly contributing to the state-of-the-art of in-hand scanning.

ps

pdf Project's Website Video Spotlight Extended Abstract YouTube DOI Project Page [BibTex]

pdf Project's Website Video Spotlight Extended Abstract YouTube DOI Project Page [BibTex]


no image
Learning Torque Control in Presence of Contacts using Tactile Sensing from Robot Skin

Calandra, R., Ivaldi, S., Deisenroth, M., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 690-695, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of Interactive Object Recognition with Tactile Sensing

Hoelscher, J., Peters, J., Hermans, T.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 310-317, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Optimizing Robot Striking Movement Primitives with Iterative Learning Control

Koc, O., Maeda, G., Neumann, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 80-87, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
A Comparison of Contact Distribution Representations for Learning to Predict Object Interactions

Leischnig, S., Luettgen, S., Kroemer, O., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 616-622, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
First-Person Tele-Operation of a Humanoid Robot

Fritsche, L., Unverzagt, F., Peters, J., Calandra, R.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 997-1002, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Segmentation Applied to an Assembly Task

Lioutikov, R., Neumann, G., Maeda, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 533-540, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl posterior
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Thumb xl mt cover
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl screenshot area 2015 07 27 013425
The fertilized forests Decision Forest Library

Lassner, C., Lienhart, R.

In ACM Transactions on Multimedia (ACMMM) Open-source Software Competition, October 2015 (inproceedings)

Abstract
Since the introduction of Random Forests in the 80's they have been a frequently used statistical tool for a variety of machine learning tasks. Many different training algorithms and model adaptions demonstrate the versatility of the forests. This variety resulted in a fragmentation of research and code, since each adaption requires its own algorithms and representations. In 2011, Criminisi and Shotton developed a unifying Decision Forest model for many tasks. By identifying the reusable parts and specifying clear interfaces, we extend this approach to an object oriented representation and implementation. This has the great advantage that research on specific parts of the Decision Forest model can be done `locally' by reusing well-tested and high-performance components. Our fertilized forests library is open source and easy to extend. It provides components allowing for parallelization up to node optimization level to exploit modern many core architectures. Additionally, the library provides consistent and easy-to-maintain interfaces to C++, Python and Matlab and offers cross-platform and cross-interface persistence.

ps

website and code pdf [BibTex]

website and code pdf [BibTex]


no image
Permutational Rademacher Complexity: a New Complexity Measure for Transductive Learning

Tolstikhin, I., Zhivotovskiy, N., Blanchard, G.

In Proceedings of the 26th International Conference on Algorithmic Learning Theory, 9355, pages: 209-223, Lecture Notes in Computer Science, (Editors: K. Chaudhuri, C. Gentile and S. Zilles), Springer, ALT, October 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl thumb
Proceedings of the 37th German Conference on Pattern Recognition

Gall, J., Gehler, P., Leibe, B.

Springer, German Conference on Pattern Recognition, October 2015 (proceedings)

ps

GCPR conference website [BibTex]

GCPR conference website [BibTex]


Thumb xl teaser
Towards Probabilistic Volumetric Reconstruction using Ray Potentials

(Best Paper Award)

Ulusoy, A. O., Geiger, A., Black, M. J.

In 3D Vision (3DV), 2015 3rd International Conference on, pages: 10-18, Lyon, October 2015 (inproceedings)

Abstract
This paper presents a novel probabilistic foundation for volumetric 3-d reconstruction. We formulate the problem as inference in a Markov random field, which accurately captures the dependencies between the occupancy and appearance of each voxel, given all input images. Our main contribution is an approximate highly parallelized discrete-continuous inference algorithm to compute the marginal distributions of each voxel's occupancy and appearance. In contrast to the MAP solution, marginals encode the underlying uncertainty and ambiguity in the reconstruction. Moreover, the proposed algorithm allows for a Bayes optimal prediction with respect to a natural reconstruction loss. We compare our method to two state-of-the-art volumetric reconstruction algorithms on three challenging aerial datasets with LIDAR ground truth. Our experiments demonstrate that the proposed algorithm compares favorably in terms of reconstruction accuracy and the ability to expose reconstruction uncertainty.

avg ps

code YouTube pdf suppmat DOI Project Page [BibTex]

code YouTube pdf suppmat DOI Project Page [BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl 07353111
Compliant wing design for a flapping wing micro air vehicle

Colmenares, D., Kania, R., Zhang, W., Sitti, M.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages: 32-39, September 2015 (inproceedings)

Abstract
In this work, we examine several wing designs for a motor-driven, flapping-wing micro air vehicle capable of liftoff. The full system consists of two wings independently driven by geared pager motors that include a spring in parallel with the output shaft. The linear transmission allows for resonant operation, while control is achieved by direct drive of the wing angle. Wings used in previous work were chosen to be fully rigid for simplicity of modeling and fabrication. However, biological wings are highly flexible and other micro air vehicles have successfully utilized flexible wing structures for specialized tasks. The goal of our study is to determine if wing flexibility can be generally used to increase wing performance. Two approaches to lift improvement using flexible wings are explored, resonance of the wing cantilever structure and dynamic wing twisting. We design and test several wings that are compared using different figures of merit. A twisted design improved lift per power by 73.6% and maximum lift production by 53.2% compared to the original rigid design. Wing twist is then modeled in order to propose optimal wing twist profiles that can maximize either wing efficiency or lift production.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl testbed
Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception

Ahmad, A., Bülthoff, H.

7th European Conference on Mobile Robots, pages: 1-8, September 2015 (conference)

Abstract
In this article we present an online estimator for multirobot cooperative localization and target tracking based on nonlinear least squares minimization. Our method not only makes the rigorous optimization-based approach applicable online but also allows the estimator to be stable and convergent. We do so by employing a moving horizon technique to nonlinear least squares minimization and a novel design of the arrival cost function that ensures stability and convergence of the estimator. Through an extensive set of real robot experiments, we demonstrate the robustness of our method as well as the optimality of the arrival cost function. The experiments include comparisons of our method with i) an extended Kalman filter-based online-estimator and ii) an offline-estimator based on full-trajectory nonlinear least squares.

ps

DOI [BibTex]

DOI [BibTex]


no image
Stabilizing Novel Objects by Learning to Predict Tactile Slip

Veiga, F., van Hoof, H., Peters, J., Hermans, T.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 5065-5072, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Millimeter-scale magnetic swimmers using elastomeric undulations

Zhang, J., Diller, E.

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1706-1711, September 2015 (inproceedings)

Abstract
This paper presents a new soft-bodied millimeterscale swimmer actuated by rotating uniform magnetic fields. The proposed swimmer moves through internal undulatory deformations, resulting from a magnetization profile programmed into its body. To understand the motion of the swimmer, a mathematical model is developed to describe the general relationship between the deflection of a flexible strip and its magnetization profile. As a special case, the situation of the swimmer on the water surface is analyzed and predictions made by the model are experimentally verified. Experimental results show the controllability of the proposed swimmer under a computer vision-based closed-loop controller. The swimmers have nominal dimensions of 1.5×4.9×0.06 mm and a top speed of 50 mm/s (10 body lengths per second). Waypoint following and multiagent control are demonstrated for swimmers constrained at the air-water interface and underwater swimming is also shown, suggesting the promising potential of this type of swimmer in biomedical and microfluidic applications.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-Free Probabilistic Movement Primitives for Physical Interaction

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 2860-2866, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Combined Pose-Wrench and State Machine Representation for Modeling Robotic Assembly Skills

Wahrburg, A., Zeiss, S., Matthias, B., Peters, J., Ding, H.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 852-857, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl sap2015
Perception of Strength and Power of Realistic Male Characters

Wellerdiek, A. C., Breidt, M., Geuss, M. N., Streuber, S., Kloos, U., Black, M. J., Mohler, B. J.

In Proc. ACM SIGGRAPH Symposium on Applied Perception, SAP’15, pages: 7-14, ACM, New York, NY, September 2015 (inproceedings)

Abstract
We investigated the influence of body shape and pose on the perception of physical strength and social power for male virtual characters. In the first experiment, participants judged the physical strength of varying body shapes, derived from a statistical 3D body model. Based on these ratings, we determined three body shapes (weak, average, and strong) and animated them with a set of power poses for the second experiment. Participants rated how strong or powerful they perceived virtual characters of varying body shapes that were displayed in different poses. Our results show that perception of physical strength was mainly driven by the shape of the body. However, the social attribute of power was influenced by an interaction between pose and shape. Specifically, the effect of pose on power ratings was greater for weak body shapes. These results demonstrate that a character with a weak shape can be perceived as more powerful when in a high-power pose.

ps

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Probabilistic Progress Prediction and Sequencing of Concurrent Movement Primitives

Manschitz, S., Kober, J., Gienger, M., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 449-455, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning vs Human Programming in Tetherball Robot Games

Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 6428-6434, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl bmvc2015 web teaser
Human Pose as Context for Object Detection

Srikantha, A., Gall, J.

British Machine Vision Conference, British Machine Vision Conference, September 2015 (conference)

Abstract
Detecting small objects in images is a challenging problem particularly when they are often occluded by hands or other body parts. Recently, joint modelling of human pose and objects has been proposed to improve both pose estimation as well as object detection. These approaches, however, focus on explicit interaction with an object and lack the flexibility to combine both modalities when interaction is not obvious. We therefore propose to use human pose as an additional context information for object detection. To this end, we represent an object category by a tree model and train regression forests that localize parts of an object for each modality separately. Predictions of the two modalities are then combined to detect the bounding box of the object. We evaluate our approach on three challenging datasets which vary in the amount of object interactions and the quality of automatically extracted human poses.

ps

pdf abstract Project Page [BibTex]

pdf abstract Project Page [BibTex]


Thumb xl screenshot area 2015 07 27 014123
Active Learning for Efficient Sampling of Control Models of Collectives

Schiendorfer, A., Lassner, C., Anders, G., Reif, W., Lienhart, R.

In International Conference on Self-adaptive and Self-organizing Systems (SASO), September 2015 (inproceedings)

Abstract
Many large-scale systems benefit from an organizational structure to provide for problem decomposition. A pivotal problem solving setting is given by hierarchical control systems familiar from hierarchical task networks. If these structures can be modified autonomously by, e.g., coalition formation and reconfiguration, adequate decisions on higher levels require a faithful abstracted model of a collective of agents. An illustrative example is found in calculating schedules for a set of power plants organized in a hierarchy of Autonomous Virtual Power Plants. Functional dependencies over the combinatorial domain, such as the joint costs or rates of change of power production, are approximated by repeatedly sampling input-output pairs and substituting the actual functions by piecewise linear functions. However, if the sampled data points are weakly informative, the resulting abstracted high-level optimization introduces severe errors. Furthermore, obtaining additional point labels amounts to solving computationally hard optimization problems. Building on prior work, we propose to apply techniques from active learning to maximize the information gained by each additional point. Our results show that significantly better allocations in terms of cost-efficiency (up to 33.7 % reduction in costs in our case study) can be found with fewer but carefully selected sampling points using Decision Forests.

ps

code (hosted on github) [BibTex]

code (hosted on github) [BibTex]


no image
Learning Motor Skills from Partially Observed Movements Executed at Different Speeds

Ewerton, M., Maeda, G., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 456-463, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

am ics

[BibTex]

[BibTex]


Thumb xl toc image
3D-printed Soft Microrobot for Swimming in Biological Fluids

Qiu, T., Palagi, S., Fischer, P.

In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages: 4922-4925, August 2015 (inproceedings)

Abstract
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable microswimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Is Breathing Rate a Confounding Variable in Brain-Computer Interfaces (BCIs) Based on EEG Spectral Power?

Ibarra Chaoul, A., Grosse-Wentrup, M.

Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 1079-1082, EMBC, August 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Retrospective motion correction of magnitude-input MR images

Loktyushin, A., Schuler, C., Scheffler, K., Schölkopf, B.

First International Workshop on Machine Learning Meets Medical Imaging (MLMMI 2015), held in conjunction with ICML 2015, 9487, pages: 3-12, Lecture Notes in Computer Science, (Editors: K. K. Bhatia and H. Lombaert), Springer, July 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl invgraphicsdemo
The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models

Jampani, V., Nowozin, S., Loper, M., Gehler, P. V.

In Special Issue on Generative Models in Computer Vision and Medical Imaging, 136, pages: 32-44, Elsevier, July 2015 (inproceedings)

Abstract
Computer vision is hard because of a large variability in lighting, shape, and texture; in addition the image signal is non-additive due to occlusion. Generative models promised to account for this variability by accurately modelling the image formation process as a function of latent variables with prior beliefs. Bayesian posterior inference could then, in principle, explain the observation. While intuitively appealing, generative models for computer vision have largely failed to deliver on that promise due to the difficulty of posterior inference. As a result the community has favored efficient discriminative approaches. We still believe in the usefulness of generative models in computer vision, but argue that we need to leverage existing discriminative or even heuristic computer vision methods. We implement this idea in a principled way in our informed sampler and in careful experiments demonstrate it on challenging models which contain renderer programs as their components. The informed sampler, using simple discriminative proposals based on existing computer vision technology achieves dramatic improvements in inference. Our approach enables a new richness in generative models that was out of reach with existing inference technology.

ps

arXiv-preprint pdf DOI Project Page [BibTex]

arXiv-preprint pdf DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 22 at 21.47.37
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
A theoretical analysis of metric hypothesis transfer learning

Perrot, M., Habrard, A.

International Conference on Machine Learning (ICML) 2015, International Conference on Machine Learning (ICML), July 2015 (conference)

[BibTex]

[BibTex]


Thumb xl tangcvpr15
Subgraph decomposition for multi-target tracking

Tang, S., Andres, B., Andriluka, M., Schiele, B.

In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 5033-5041, IEEE, IEEE Conference on Computer Vision and Pattern Recognition, June 2015 (inproceedings)

ps

PDF Proof-of-Lemma-1 DOI [BibTex]

PDF Proof-of-Lemma-1 DOI [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Thumb xl silviateaser
The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose

Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 3537-3546, June 2015 (inproceedings)

Abstract
We propose a new 3D model of the human body that is both realistic and part-based. The body is represented by a graphical model in which nodes of the graph correspond to body parts that can independently translate and rotate in 3D as well as deform to capture pose-dependent shape variations. Pairwise potentials define a “stitching cost” for pulling the limbs apart, giving rise to the stitched puppet model (SPM). Unlike existing realistic 3D body models, the distributed representation facilitates inference by allowing the model to more effectively explore the space of poses, much like existing 2D pictorial structures models. We infer pose and body shape using a form of particle-based max-product belief propagation. This gives the SPM the realism of recent 3D body models with the computational advantages of part-based models. We apply the SPM to two challenging problems involving estimating human shape and pose from 3D data. The first is the FAUST mesh alignment challenge (http://faust.is.tue.mpg.de/), where ours is the first method to successfully align all 3D meshes. The second involves estimating pose and shape from crude visual hull representations of complex body movements.

ps

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Thumb xl img displet
Displets: Resolving Stereo Ambiguities using Object Knowledge

Güney, F., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 4165-4175, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
Stereo techniques have witnessed tremendous progress over the last decades, yet some aspects of the problem still remain challenging today. Striking examples are reflecting and textureless surfaces which cannot easily be recovered using traditional local regularizers. In this paper, we therefore propose to regularize over larger distances using object-category specific disparity proposals (displets) which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The proposed displets encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel based CRF framework and demonstrate its benefits on the KITTI stereo evaluation.

avg ps

pdf abstract suppmat [BibTex]

pdf abstract suppmat [BibTex]


no image
Toward a large-scale visuo-haptic dataset for robotic learning

Burka, A., Hu, S., Krishnan, S., Kuchenbecker, K. J., Hendricks, L. A., Gao, Y., Darrell, T.

In Proc. CVPR Workshop on the Future of Datasets in Vision, 2015 (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl img sceneflow
Object Scene Flow for Autonomous Vehicles

Menze, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 3061-3070, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which can't be handled by existing methods.

avg ps

pdf abstract suppmat DOI [BibTex]

pdf abstract suppmat DOI [BibTex]


Thumb xl ijazteaser
Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction

Akhter, I., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 1446-1455, June 2015 (inproceedings)

Abstract
The estimation of 3D human pose from 2D joint locations is central to many vision problems involving the analysis of people in images and video. To address the fact that the problem is inherently ill posed, many methods impose a prior over human poses. Unfortunately these priors admit invalid poses because they do not model how joint-limits vary with pose. Here we make two key contributions. First, we collected a motion capture dataset that explores a wide range of human poses. From this we learn a pose-dependent model of joint limits that forms our prior. The dataset and the prior will be made publicly available. Second, we define a general parameterization of body pose and a new, multistage, method to estimate 3D pose from 2D joint locations that uses an over-complete dictionary of human poses. Our method shows good generalization while avoiding impossible poses. We quantitatively compare our method with recent work and show state-of-the-art results on 2D to 3D pose estimation using the CMU mocap dataset. We also show superior results on manual annotations on real images and automatic part-based detections on the Leeds sports pose dataset.

ps

pdf Extended Abstract video project/data/code poster DOI Project Page Project Page [BibTex]

pdf Extended Abstract video project/data/code poster DOI Project Page Project Page [BibTex]


no image
Detecting Lumps in Simulated Tissue via Palpation with a BioTac

Hui, J., Block, A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, 2015, Work-in-progress paper. Poster presentation given by Hui (inproceedings)

hi

[BibTex]

[BibTex]