Header logo is


2019


Thumb xl lcsslip
Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

Steve Heim, , Sproewitz, A.

IEEE Transactions on Robotics (T-RO) , May 2019 (article) In press

Abstract
Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. In this paper, we show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low-dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.

dlg

arXiv preprint arXiv:1806.08081 link (url) DOI Project Page [BibTex]


Thumb xl m13 bacteriophages
Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity

Alarcon-Correa, M., Guenther, J., Troll, J., Kadiri, V. M., Bill, J., Fischer, P., Rothenstein, D.

ACS Nano, March 2019 (article)

Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used, with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood where the enzyme driven micropump can be powered at the physiological blood-urea concentration.

pf

link (url) DOI [BibTex]


Thumb xl jcp pfg nmr
Absolute diffusion measurements of active enzyme solutions by NMR

Guenther, J., Majer, G., Fischer, P.

J. Chem. Phys., 150(124201), March 2019 (article)

Abstract
The diffusion of enzymes is of fundamental importance for many biochemical processes. Enhanced or directed enzyme diffusion can alter the accessibility of substrates and the organization of enzymes within cells. Several studies based on fluorescence correlation spectroscopy (FCS) report enhanced diffusion of enzymes upon interaction with their substrate or inhibitor. In this context, major importance is given to the enzyme fructose-bisphosphate aldolase, for which enhanced diffusion has been reported even though the catalysed reaction is endothermic. Additionally, enhanced diffusion of tracer particles surrounding the active aldolase enzymes has been reported. These studies suggest that active enzymes can act as chemical motors that self-propel and give rise to enhanced diffusion. However, fluorescence studies of enzymes can, despite several advantages, suffer from artefacts. Here we show that the absolute diffusion coefficients of active enzyme solutions can be determined with Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR). The advantage of PFG-NMR is that the motion of the molecule of interest is directly observed in its native state without the need for any labelling. Further, PFG-NMR is model-free and thus yields absolute diffusion constants. Our PFG-NMR experiments of solutions containing active fructose-bisphosphate aldolase from rabbit muscle do not show any diffusion enhancement for the active enzymes nor the surrounding molecules. Additionally, we do not observe any diffusion enhancement of aldolase in the presence of its inhibitor pyrophosphate.

pf

link (url) DOI [BibTex]


no image
Elastic Scattering Time of Matter-Waves in Disordered Potentials

Richard, J., Lim, L., Denechaud, V., Volchkov, V., Lecoutre, B., Mukhtar, M., Jendrzejewski, F., Aspect, A., Signoles, A., Sanchez-Palencia, L., Josse, V.

Physical Review Letters, 122, pages: 100403, American Physical Society (APS), March 2019 (article)

Abstract
We report on an extensive study of the elastic scattering time $τ_\mathrm{s}$ of matter waves in optical disordered potentials. Using direct experimental measurements, numerical simulations, and comparison with the first-order Born approximation based on the knowledge of the disorder properties, we explore the behavior of $τ_\mathrm{s}$ over more than 3 orders of magnitude, ranging from the weak to the strong scattering regime. We study in detail the location of the crossover and, as a main result, we reveal the strong influence of the disorder statistics, especially on the relevance of the widely used Ioffe-Regel-like criterion $k l_\mathrm{s}\sim 1$. While it is found to be relevant for Gaussian-distributed disordered potentials, we observe significant deviations for laser speckle disorders that are commonly used with ultracold atoms. Our results are crucial for connecting experimental investigation of complex transport phenomena, such as Anderson localization, to microscopic theories.

sf

DOI [BibTex]

DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, Special Issue of the ECML PKDD 2019 Journal Track, March 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl activeoptorheologicalmedium
Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium

Choudhury, U., Singh, D. P., Qiu, T., Fischer, P.

Adv. Mat., (1807382), Febuary 2019 (article)

Abstract
The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy‐consuming “active” colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin–motor–protein mixtures have, respectively, reveals superfluid‐like and gel‐like states. Attractive inanimate systems for active matter are chemically self‐propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light‐triggered asymmetric titanium dioxide that self‐propel, can be obtained in large quantities, and self‐organize to make a gram‐scale active medium. The suspension shows an activity‐dependent tenfold reversible change in its bulk viscosity.

pf

link (url) DOI [BibTex]


Thumb xl kenny
Perceptual Effects of Inconsistency in Human Animations

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

ACM Trans. Appl. Percept., 16(1):2:1-2:18, Febuary 2019 (article)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person’s movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. From these data, we estimated both the kinematics of the actions as well as the performer’s individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. Using these stimuli we conducted three experiments in an immersive virtual reality environment. First, a group of participants detected which of two stimuli was inconsistent. Performance was very low, and results were only marginally significant. Next, a second group of participants rated perceived attractiveness, eeriness, and humanness of consistent and inconsistent stimuli, but these judgements of animation characteristics were not affected by consistency of the stimuli. Finally, a third group of participants rated properties of the objects rather than of the performers. Here, we found strong influences of shape-motion inconsistency on perceived weight and thrown distance of objects. This suggests that the visual system relies on its knowledge of shape and motion and that these components are assimilated into an altered perception of the action outcome. We propose that the visual system attempts to resist inconsistent interpretations of human animations. Actions involving object manipulations present an opportunity for the visual system to reinterpret the introduced inconsistencies as a change in the dynamics of an object rather than as an unexpected combination of body shape and body motion.

ps

publisher pdf DOI [BibTex]

publisher pdf DOI [BibTex]


Thumb xl hyperrayleigh
First Observation of Optical Activity in Hyper-Rayleigh Scattering

Collins, J., Rusimova, K., Hooper, D., Jeong, H. H., Ohnoutek, L., Pradaux-Caggiano, F., Verbiest, T., Carbery, D., Fischer, P., Valev, V.

Phys. Rev. X, 9(011024), January 2019 (article)

Abstract
Chiral nano- or metamaterials and surfaces enable striking photonic properties, such as negative refractive index and superchiral light, driving promising applications in novel optical components, nanorobotics, and enhanced chiral molecular interactions with light. In characterizing chirality, although nonlinear chiroptical techniques are typically much more sensitive than their linear optical counterparts, separating true chirality from anisotropy is a major challenge. Here, we report the first observation of optical activity in second-harmonic hyper-Rayleigh scattering (HRS). We demonstrate the effect in a 3D isotropic suspension of Ag nanohelices in water. The effect is 5 orders of magnitude stronger than linear optical activity and is well pronounced above the multiphoton luminescence background. Because of its sensitivity, isotropic environment, and straightforward experimental geometry, HRS optical activity constitutes a fundamental experimental breakthrough in chiral photonics for media including nanomaterials, metamaterials, and chemical molecules.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl journal iav
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 2019 (article) Accepted

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


no image
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schuetz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Doing more with less: Meta-reasoning and meta-learning in humans and machines

Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


Thumb xl virtualcaliper
The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bülthoff, H. H., Black, M. J.

IEEE Transactions on Visualization and Computer Graphics, 25, pages: 1887,1897, IEEE, 2019 (article)

Abstract
Creating metrically accurate avatars is important for many applications such as virtual clothing try-on, ergonomics, medicine, immersive social media, telepresence, and gaming. Creating avatars that precisely represent a particular individual is challenging however, due to the need for expensive 3D scanners, privacy issues with photographs or videos, and difficulty in making accurate tailoring measurements. We overcome these challenges by creating “The Virtual Caliper”, which uses VR game controllers to make simple measurements. First, we establish what body measurements users can reliably make on their own body. We find several distance measurements to be good candidates and then verify that these are linearly related to 3D body shape as represented by the SMPL body model. The Virtual Caliper enables novice users to accurately measure themselves and create an avatar with their own body shape. We evaluate the metric accuracy relative to ground truth 3D body scan data, compare the method quantitatively to other avatar creation tools, and perform extensive perceptual studies. We also provide a software application to the community that enables novices to rapidly create avatars in fewer than five minutes. Not only is our approach more rapid than existing methods, it exports a metrically accurate 3D avatar model that is rigged and skinned.

ps

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]


no image
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]


no image
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T.

Nature Human Behavior, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


Thumb xl trimpe2019resource image
Resource-aware IoT Control: Saving Communication through Predictive Triggering

Trimpe, S., Baumann, D.

IEEE Internet of Things Journal, 2019 (article) Accepted

Abstract
The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.

ics

PDF arXiv DOI [BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


no image
A rational reinterpretation of dual process theories

Milli, S., Lieder, F., Griffiths, T.

2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Comparison of theories of fast and ultrafast magnetization dynamics

Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 469, pages: 28-29, NH, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]

2015


Thumb xl grassmanteaser
Scalable Robust Principal Component Analysis using Grassmann Averages

Hauberg, S., Feragen, A., Enficiaud, R., Black, M.

IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), December 2015 (article)

Abstract
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.

ps sf

preprint pdf from publisher supplemental Project Page [BibTex]

2015


preprint pdf from publisher supplemental Project Page [BibTex]


Thumb xl toc image
Enzymatically active biomimetic micropropellers for the penetration of mucin gels

Walker (Schamel), D., Käsdorf, B. T., Jeong, H. H., Lieleg, O., Fischer, P.

Science Advances, 1(11):e1500501, December 2015 (article)

Abstract
In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Quantifying changes in climate variability and extremes: Pitfalls and their overcoming

Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., Mahecha, M. D.

Geophysical Research Letters, 42(22):9990-9998, November 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Diversity of sharp wave-ripple LFP signatures reveals differentiated brain-wide dynamical events

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Proceedings of the National Academy of Sciences U.S.A, 112(46):E6379-E6387, November 2015 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl splitbodieswebteaser2
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

pdf video code/model errata DOI Project Page Project Page [BibTex]

pdf video code/model errata DOI Project Page Project Page [BibTex]


no image
Noise masking of White’s illusion exposes the weakness of current spatial filtering models of lightness perception

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(14):1-17, October 2015 (article)

ei

DOI Project Page [BibTex]


no image
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B., Panzeri, S.

PLOS Biology, 13(9):e1002257, September 2015 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl toc image
The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications

Valetaud, M., Loget, G., Roche, J., Hueken, N., Fattah, Z., Badets, V., Fontaine, O., Zigah, D.

J. of Chem. Ed., 92(10):1700-1704, September 2015 (article)

Abstract
The Electrochemical Pen (EChemPen) was developed as an attractive tool for learning electrochemistry. The fabrication, principle, and operation of the EChemPen are simple and can be easily performed by students in practical classes. It is based on a regular fountain pen principle, where the electrolytic solution is dispensed at a tip to locally modify a conductive surface by triggering a localized electrochemical reaction. Three simple model reactions were chosen to demonstrate the versatility of the EChemPen for teaching various electrochemical processes. We describe first the reversible writing/erasing of metal letters, then the electrodeposition of a black conducting polymer "ink", and finally the colorful writings that can be generated by titanium anodization and that can be controlled by the applied potential. These entertaining and didactic experiments are adapted for teaching undergraduate students that start to study electrochemistry by means of surface modification reactions.

pf

DOI [BibTex]

DOI [BibTex]


no image
Semi-Supervised Interpolation in an Anticausal Learning Scenario

Janzing, D., Schölkopf, B.

Journal of Machine Learning Research, 16, pages: 1923-1948, September 2015 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl publications toc
Experimental investigation of optimal adhesion of mushroomlike elastomer microfibrillar adhesives

Marvi, H., Song, S., Sitti, M.

Langmuir, 31(37):10119-10124, American Chemical Society, August 2015 (article)

Abstract
Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl dynateaser
Dyna: A Model of Dynamic Human Shape in Motion

Pons-Moll, G., Romero, J., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 34(4):120:1-120:14, ACM, August 2015 (article)

Abstract
To look human, digital full-body avatars need to have soft tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft tissue motion causes mesh triangles to deform relative to a base 3D body model. Our Dyna model uses a low-dimensional linear subspace to approximate soft-tissue deformation and relates the subspace coefficients to the changing pose of the body. Dyna uses a second-order auto-regressive model that predicts soft-tissue deformations based on previous deformations, the velocity and acceleration of the body, and the angular velocities and accelerations of the limbs. Dyna also models how deformations vary with a person’s body mass index (BMI), producing different deformations for people with different shapes. Dyna realistically represents the dynamics of soft tissue for previously unseen subjects and motions. We provide tools for animators to modify the deformations and apply them to new stylized characters.

ps

pdf preprint video data DOI Project Page Project Page [BibTex]

pdf preprint video data DOI Project Page Project Page [BibTex]


no image
Testing the role of luminance edges in White’s illusion with contour adaptation

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(11):1-16, August 2015 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl objs2acts
Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

Vargas-Irwin, C. E., Franquemont, L., Black, M. J., Donoghue, J. P.

Journal of Neuroscience, 35(30):10888-10897, July 2015 (article)

Abstract
Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. Significance Statement: The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way.

ps

publisher link DOI Project Page [BibTex]

publisher link DOI Project Page [BibTex]


Thumb xl publications toc
pH-taxis of biohybrid microsystems

Zhuang, J., Carlsen, R. W., Sitti, M.

Scientific reports, 5, Nature Publishing Group, June 2015 (article)

Abstract
The last decade has seen an increasing number of studies developing bacteria and other cell-integrated biohybrid microsystems. However, the highly stochastic motion of these microsystems severely limits their potential use. Here, we present a method that exploits the pH sensing of flagellated bacteria to realize robust drift control of multi-bacteria propelled microrobots. Under three specifically configured pH gradients, we demonstrate that the microrobots exhibit both unidirectional and bidirectional pH-tactic behaviors, which are also observed in free-swimming bacteria. From trajectory analysis, we find that the swimming direction and speed biases are two major factors that contribute to their tactic drift motion. The motion analysis of microrobots also sheds light on the propulsion dynamics of the flagellated bacteria as bioactuators. It is expected that similar driving mechanisms are shared among pH-taxis, chemotaxis, and thermotaxis. By identifying the mechanism that drives the tactic behavior of bacteria-propelled microsystems, this study opens up an avenue towards improving the control of biohybrid microsystems. Furthermore, assuming that it is possible to tune the preferred pH of bioactuators by genetic engineering, these biohybrid microsystems could potentially be applied to sense the pH gradient induced by cancerous cells in stagnant fluids inside human body and realize targeted drug delivery.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl toc image
Optimal Length of Low Reynolds Number Nanopropellers

Walker (Schamel), D., Kuebler, M., Morozov, K. I., Fischer, P., Leshansky, A. M.

Nano Letters, 15(7):4412-4416, June 2015 (article)

Abstract
Locomotion in fluids at the nanoscale is dominated by viscous drag. One efficient propulsion scheme is to use a weak rotating magnetic field that drives a chiral object. Froth bacterial flagella to artificial drills, the corkscrew is a universally useful chiral shape for propulsion in viscous environments. Externally powered magnetic micro- and nanomotors have been recently developed that allow for precise fuel-free propulsion in complex media. Here, we combine analytical and numerical theory with experiments on nanostructured screw-propellers to show that the optimal length is surprisingly short only about one helical turn, which is shorter than most of the structures in use to date. The results have important implications for the design of artificial actuated nano- and micropropellers and can dramatically reduce fabrication times, while ensuring optimal performance.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl 1 s2.0 s0141635915000938 main
Structural optimization for flexure-based parallel mechanisms–Towards achieving optimal dynamic and stiffness properties

Lum, G. Z., Teo, T. J., Yeo, S. H., Yang, G., Sitti, M.

Precision Engineering, 42, pages: 195-207, Elsevier, May 2015 (article)

Abstract
Flexure-based parallel mechanisms (FPMs) are a type of compliant mechanisms that consist of a rigid end-effector that is articulated by several parallel, flexible limbs (a.k.a. sub-chains). Existing design methods can enhance the FPMs’ dynamic and stiffness properties by conducting a size optimization on their sub-chains. A similar optimization process, however, was not performed for their sub-chains’ topology, and this may severely limit the benefits of a size optimization. Thus, this paper proposes to use a structural optimization approach to synthesize and optimize the topology, shape and size of the FPMs’ sub-chains. The benefits of this approach are demonstrated via the design and development of a planar X − Y − θz FPM. A prototype of this FPM was evaluated experimentally to have a large workspace of 1.2 mm × 1.2 mm × 6°, a fundamental natural frequency of 102 Hz, and stiffness ratios that are greater than 120. The achieved properties show significant improvement over existing 3-degrees-of-freedom compliant mechanisms that can deflect more than 0.5 mm and 0.5°. These compliant mechanisms typically have stiffness ratios that are less than 60 and a fundamental natural frequency that is less than 45 Hz.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
A theoretical study of potentially observable chirality-sensitive NMR effects in molecules

Garbacz, P., Cukras, J., Jaszunski, M.

Phys. Chem. Chem. Phys., 17(35):22642-22651, May 2015 (article)

Abstract
Two recently predicted nuclear magnetic resonance effects, the chirality-induced rotating electric polarization and the oscillating magnetization, are examined for several experimentally available chiral molecules. We discuss in detail the requirements for experimental detection of chirality-sensitive NMR effects of the studied molecules. These requirements are related to two parameters: the shielding polarizability and the antisymmetric part of the nuclear magnetic shielding tensor. The dominant second contribution has been computed for small molecules at the coupled cluster and density functional theory levels. It was found that DFT calculations using the KT2 functional and the aug-cc-pCVTZ basis set adequately reproduce the CCSD(T) values obtained with the same basis set. The largest values of parameters, thus most promising from the experimental point of view, were obtained for the fluorine nuclei in 1,3-difluorocyclopropene and 1,3-diphenyl-2-fluoro-3-trifluoromethylcyclopropene.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl af4e540bee9e66bef88de83541787fe62fb3803ca149aa6a76018772ebe5b95f
Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups

Alarcon-Correa, M., Lee, T. C., Fischer, P.

Angew. Chem. Int. Ed., 54(23):6730-6734, May 2015, Featured cover article. (article)

Abstract
Host-guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well-defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1: 1 inclusion complexes of metal nanoparticles inside oxide nanocups with high yield (> 70%) and regiospecificity (> 90%) by means of a reactive double Janus nanoparticle intermediate is reported. Experimental evidence confirms that the inclusion complexes are formed by a kinetically controlled mechanism involving a delicate interplay between bipolar galvanic corrosion and alloying-dealloying oxidation. Release of the NP guest from the nanocups can be efficiently triggered by an external stimulus. Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl 1 s2.0 s0142961215003683 main
Controlled surface topography regulates collective 3D migration by epithelial–mesenchymal composite embryonic tissues

Song, J., Shawky, J. H., Kim, Y., Hazar, M., LeDuc, P. R., Sitti, M., Davidson, L. A.

Biomaterials, 58, pages: 1-9, Elsevier, April 2015 (article)

Abstract
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Transfer Printing of Metallic Microstructures on Adhesion-Promoting Hydrogel Substrates

Wu, H., Sariola, V., Zhu, C., Zhao, J., Sitti, M., Bettinger, C. J.

Advanced Materials, 27(22):3398-3404, April 2015 (article)

Abstract
Fabrication schemes that integrate inorganic microstructures with hydrogel substrates are essential for advancing flexible electronics. A transfer printing process that is made possible through the design and synthesis of adhesion-promoting hydrogels as target substrates is reported. This fabrication technique may advance ultracompliant electronics by melding microfabricated structures with swollen hydrogel substrates.

pi

DOI [BibTex]

DOI [BibTex]