Header logo is


2019


Max Planck Institute for Intelligent Systems - Highlights
Max Planck Institute for Intelligent Systems - Highlights
2019 (mpi_year_book)

Abstract
In the future, artificially intelligent systems will substantially change the way we live, work, and communicate. Intelligent systems will become increasingly important in all spheres of life – as virtual systems on the Internet, or as cyber-physical systems in the real world. Artificial intelligence (AI) will be used for autonomous driving, as well as to diagnose and fight diseases, or to carry out emergency operations that are too dangerous for humans. This is just the beginning.

MPI IS Yearbook 2019 (en) MPI IS Jahresbericht 2019 (de) [BibTex]

2013


Human Pose Calculation from Optical Flow Data
Human Pose Calculation from Optical Flow Data

Black, M., Loper, M., Romero, J., Zuffi, S.

European Patent Application EP 2843621 , August 2013 (patent)

ps

Google Patents [BibTex]

2013


Google Patents [BibTex]


no image
Perceiving Systems – Computers that see

Gehler, P. V.

2013 (mpi_year_book)

Abstract
Our research goal is to define in a mathematical precise way how visual perception works. We want to describe how intelligent systems understand images. To this end we study probabilistic models and statistical learning. Encoding prior knowledge about the world is complemented with automatic learning from training data. One aspect is being able to identify physical factors in images, such as lighting, geometry, and materials. Furthermore we want to automatically recognize and give names to objects and persons in images and understand the scene as a whole.

link (url) [BibTex]


no image
Being small, being smart

Liu, Na

2013 (mpi_year_book)

Abstract
Metallic nanostructures feature plasmonic resonances which spatially confine light on the nanometer scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm3 or less. We utilize such plasmonic focusing for hydrogen detection at the single particle level, which avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. This concept paves the road towards the observation of single catalytic processes in nanoreactors.

link (url) [BibTex]

link (url) [BibTex]