Header logo is


2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


Thumb xl image  1
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

ps

Official Version [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl phd thesis teaser
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

ps

pdf [BibTex]

pdf [BibTex]


no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2009


no image
Clinical PET/MRI-System and Its Applications with MRI Based Attenuation Correction

Kolb, A., Hofmann, M., Sossi, V., Wehrl, H., Sauter, A., Schmid, A., Schlemmer, H., Claussen, C., Pichler, B.

IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009), 2009, pages: 1, October 2009 (poster)

Abstract
Clinical PET/MRI is an emerging new hybrid imaging modality. In addition to provide an unique possibility for multifunctional imaging with temporally and spatially matched data, it also provides anatomical information that can also be used for attenuation correction with no radiation exposure to the subjects. A plus of combined compared to sequential PET and MR imaging is the reduction of total scan time. Here we present our initial experience with a hybrid brain PET/MRI system. Due to the ethical approval patient scans could only be performed after a diagnostic PET/CT. We estimate that in approximately 50% of the cases PET/MRI was of superior diagnostic value compared to PET/CT and was able to provide additional information, such as DTI, spectroscopy and Time Of Flight (TOF) angiography. Here we present 3 patient cases in oncology, a retropharyngeal carcinoma in neurooncology, a relapsing meningioma and in neurology a pharyngeal carcinoma in addition to an infraction of the right hemisphere. For quantitative PET imaging attenuation correction is obligatory. In current PET/MRI setup we used our MRI based atlas method for calculating the mu-map for attenuation correction. MR-based attenuation correction accuracy was quantitatively compared to CT-based PET attenuation correction. Extensive studies to assess potential mutual interferences between PET and MR imaging modalities as well as NEMA measurements have been performed. The first patient studies as well as the phantom tests clearly demonstrated the overall good imaging performance of this first human PET/MRI system. Ongoing work concentrates on advanced normalization and reconstruction methods incorporating count-rate based algorithms.

ei

Web [BibTex]

2009


Web [BibTex]


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

ei

PDF [BibTex]

PDF [BibTex]


no image
A flowering-time gene network model for association analysis in Arabidopsis thaliana

Klotzbücher, K., Kobayashi, Y., Shervashidze, N., Borgwardt, K., Weigel, D.

2009(39):95-96, German Conference on Bioinformatics (GCB '09), September 2009 (poster)

Abstract
In our project we want to determine a set of single nucleotide polymorphisms (SNPs), which have a major effect on the flowering time of Arabidopsis thaliana. Instead of performing a genome-wide association study on all SNPs in the genome of Arabidopsis thaliana, we examine the subset of SNPs from the flowering-time gene network model. We are interested in how the results of the association study vary when using only the ascertained subset of SNPs from the flowering network model, and when additionally using the information encoded by the structure of the network model. The network model is compiled from the literature by manual analysis and contains genes which have been found to affect the flowering time of Arabidopsis thaliana [Far+08; KW07]. The genes in this model are annotated with the SNPs that are located in these genes, or in near proximity to them. In a baseline comparison between the subset of SNPs from the graph and the set of all SNPs, we omit the structural information and calculate the correlation between the individual SNPs and the flowering time phenotype by use of statistical methods. Through this we can determine the subset of SNPs with the highest correlation to the flowering time. In order to further refine this subset, we include the additional information provided by the network structure by conducting a graph-based feature pre-selection. In the further course of this project we want to validate and examine the resulting set of SNPs and their corresponding genes with experimental methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Initial Data from a first PET/MRI-System and its Applications in Clinical Studies Using MRI Based Attenuation Correction

Kolb, A., Hofmann, M., Sossi, V., Wehrl, H., Sauter, A., Schmid, A., Judenhofer, M., Schlemmer, H., Claussen, C., Pichler, B.

2009 World Molecular Imaging Congress, 2009, pages: 1200, September 2009 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
A High-Speed Object Tracker from Off-the-Shelf Components

Lampert, C., Peters, J.

First IEEE Workshop on Computer Vision for Humanoid Robots in Real Environments at ICCV 2009, 1, pages: 1, September 2009 (poster)

Abstract
We introduce RTblob, an open-source real-time vision system for 3D object detection that achieves over 200 Hz tracking speed with only off-the-shelf hardware component. It allows fast and accurate tracking of colored objects in 3D without expensive and often custom-built hardware, instead making use of the PC graphics cards for the necessary image processing operations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Estimating Critical Stimulus Features from Psychophysical Data: The Decision-Image Technique Applied to Human Faces

Macke, J., Wichmann, F.

Journal of Vision, 9(8):31, 9th Annual Meeting of the Vision Sciences Society (VSS), August 2009 (poster)

Abstract
One of the main challenges in the sensory sciences is to identify the stimulus features on which the sensory systems base their computations: they are a pre-requisite for computational models of perception. We describe a technique---decision-images--- for extracting critical stimulus features based on logistic regression. Rather than embedding the stimuli in noise, as is done in classification image analysis, we want to infer the important features directly from physically heterogeneous stimuli. A Decision-image not only defines the critical region-of-interest within a stimulus but is a quantitative template which defines a direction in stimulus space. Decision-images thus enable the development of predictive models, as well as the generation of optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a human face discrimination experiment. We show that decision-images are able to predict human responses not only in terms of overall percent correct but are able to predict, for individual observers, the probabilities with which individual faces are (mis-) classified. We then test the predictions of the models using optimized stimuli. Finally, we discuss possible generalizations of the approach and its relationships with other models.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Semi-supervised Analysis of Human fMRI Data

Shelton, JA., Blaschko, MB., Lampert, CH., Bartels, A.

Berlin Brain Computer Interface Workshop on Advances in Neurotechnology, 2009, pages: 1, July 2009 (poster)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, CCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, CCA may suffer from small sample effects. We propose to use semisupervised Laplacian regularization to utilize data that are present in only one modality. This approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned. fMRI data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of CCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of CCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Optimization of k-Space Trajectories by Bayesian Experimental Design

Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.

17(2627), 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2009 (poster)

Abstract
MR image reconstruction from undersampled k-space can be improved by nonlinear denoising estimators since they incorporate statistical prior knowledge about image sparsity. Reconstruction quality depends crucially on the undersampling design (k-space trajectory), in a manner complicated by the nonlinear and signal-dependent characteristics of these methods. We propose an algorithm to assess and optimize k-space trajectories for sparse MRI reconstruction, based on Bayesian experimental design, which is scaled up to full MR images by a novel variational relaxation to iteratively reweighted FFT or gridding computations. Designs are built sequentially by adding phase encodes predicted to be most informative, given the combination of previous measurements with image prior information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
MR-Based Attenuation Correction for PET/MR

Hofmann, M., Steinke, F., Bezrukov, I., Kolb, A., Aschoff, P., Lichy, M., Erb, M., Nägele, T., Brady, M., Schölkopf, B., Pichler, B.

17(260), 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2009 (poster)

Abstract
There has recently been a growing interest in combining PET and MR. Attenuation correction (AC), which accounts for radiation attenuation properties of the tissue, is mandatory for quantitative PET. In the case of PET/MR the attenuation map needs to be determined from the MR image. This is intrinsically difficult as MR intensities are not related to the electron density information of the attenuation map. Using ultra-short echo (UTE) acquisition, atlas registration and machine learning, we present methods that allow prediction of the attenuation map based on the MR image both for brain and whole body imaging.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery

Blaschko, MB.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning

Steinke, F.

Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)

ei

PDF [BibTex]


no image
Magnetische L10-FePt Nanostrukturen für höchste Datenspeicherdichten

Breitling, A.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Ab-initio Elliott-Yafet modeling of ultrafast demagnetization after laser irradiation

Illg, C.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Element specific investigation of the magnetization profile at the CrO2/RuO2 interface

Zafar, K.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Bayesian Methods for Autonomous Learning Systems (Phd Thesis)

Ting, J.

Department of Computer Science, University of Southern California, Los Angeles, CA, 2009, clmc (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Magnetic resonant reflectometry on exchange bias systems

Brück, S.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
In-situ - Untersuchungen zu Interdiffusion und Magnetismus in magnetischen Multilayern

Schmidt, M.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Theorie der elektronischen Zustände in oxidischen magnetischen Materialien

Kostoglou, C.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an Ferromagnet- und Supraleiter-Nanosystemen und deren Hybriden

Treiber, S.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]

2002


no image
Surface-slant-from-texture discrimination: Effects of slant level and texture type

Rosas, P., Wichmann, F., Wagemans, J.

Journal of Vision, 2(7):300, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
The problem of surface-slant-from-texture was studied psychophysically by measuring the performances of five human subjects in a slant-discrimination task with a number of different types of textures: uniform lattices, randomly displaced lattices, polka dots, Voronoi tessellations, orthogonal sinusoidal plaid patterns, fractal or 1/f noise, “coherent” noise and a “diffusion-based” texture (leopard skin-like). The results show: (1) Improving performance with larger slants for all textures. (2) A “non-symmetrical” performance around a particular slant characterized by a psychometric function that is steeper in the direction of the more slanted orientation. (3) For sufficiently large slants (66 deg) there are no major differences in performance between any of the different textures. (4) For slants at 26, 37 and 53 degrees, however, there are marked differences between the different textures. (5) The observed differences in performance across textures for slants up to 53 degrees are systematic within subjects, and nearly so across them. This allows a rank-order of textures to be formed according to their “helpfulness” — that is, how easy the discrimination task is when a particular texture is mapped on the surface. Polka dots tended to allow the best slant discrimination performance, noise patterns the worst up to the large slant of 66 degrees at which performance was almost independent of the particular texture chosen. Finally, our large number of 2AFC trials (approximately 2800 trials per texture across subjects) and associated tight confidence intervals may enable us to find out about which statistical properties of the textures could be responsible for surface-slant-from-texture estimation, with the ultimate goal of being able to predict observer performance for any arbitrary texture.

ei

Web DOI [BibTex]

2002


Web DOI [BibTex]


no image
Modelling Contrast Transfer in Spatial Vision

Wichmann, F.

Journal of Vision, 2(10):7, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast, the results of which allow different models of contrast processing (e.g. energy versus gain-control models) to be critically assessed (Wichmann & Henning, 1999). Studies of detection and discrimination using pulse train stimuli in noise, on the other hand, make predictions about the number, position and properties of noise sources within the processing stream (Henning, Bird & Wichmann, 2002). Here I report modelling results combining data from both sinusoidal and pulse train experiments in and without noise to arrive at a more tightly constrained model of early spatial vision.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Pulse train detection and discrimination in pink noise

Henning, G., Wichmann, F., Bird, C.

Journal of Vision, 2(7):229, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on the display was measured and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband "pink" noise, designed to equalize the detectability of the components of the pulse train, made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. In contrast, a 2.09-c/deg "super train," constructed to have 8 equally detectable harmonics, was a factor of five more detectable than any of its components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phase information in the recognition of natural images

Braun, D., Wichmann, F., Gegenfurtner, K.

Perception, 31(ECVP Abstract Supplement):133, 25th European Conference on Visual Perception, August 2002 (poster)

Abstract
Fourier phase plays an important role in determining global image structure. For example, when the phase spectrum of an image of a flower is swapped with that of a tank, we usually perceive a tank, even though the amplitude spectrum is still that of the flower. Similarly, when the phase spectrum of an image is randomly swapped across frequencies, that is its Fourier energy is randomly distributed over the image, the resulting image becomes impossible to recognise. Our goal was to evaluate the effect of phase manipulations in a quantitative manner. Subjects viewed two images of natural scenes, one of which contained an animal (the target) embedded in the background. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was the independent variable, uniformly distributed between 0° and ±180°. Subjects were remarkably resistant to phase noise. Even with ±120° noise, subjects were still 75% correct. The proportion of correct answers closely followed the correlation between original and noise-distorted images. Thus it appears as if it was not the global phase information per se that determines our percept of natural images, but rather the effect of phase on local image features.

ei

Web [BibTex]

Web [BibTex]


no image
Detection and discrimination in pink noise

Wichmann, F., Henning, G.

5, pages: 100, 5. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2002 (poster)

Abstract
Much of our information about early spatial vision comes from detection experiments involving low-contrast stimuli, which are not, perhaps, particularly "natural" stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast whilst keeping the number of unknown parameters comparatively small. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on our display was measured using a high-performance digital camera (Photometrics) and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband 1-D "pink" noise made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

ei

Web [BibTex]

Web [BibTex]


no image
Application of Monte Carlo Methods to Psychometric Function Fitting

Wichmann, F.

Proceedings of the 33rd European Conference on Mathematical Psychology, pages: 44, 2002 (poster)

Abstract
The psychometric function relates an observer's performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. Here I describe methods to (1) fitting psychometric functions, (2) assessing goodness-of-fit, and (3) providing confidence intervals for the function's parameters and other estimates derived from them. First I describe a constrained maximum-likelihood method for parameter estimation. Using Monte-Carlo simulations I demonstrate that it is important to have a fitting method that takes stimulus-independent errors (or "lapses") into account. Second, a number of goodness-of-fit tests are introduced. Because psychophysical data sets are usually rather small I advocate the use of Monte Carlo resampling techniques that do not rely on asymptotic theory for goodness-of-fit assessment. Third, a parametric bootstrap is employed to estimate the variability of fitted parameters and derived quantities such as thresholds and slopes. I describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested without incurring too high a cost in computation time. Finally I describe how the methods can be extended to test hypotheses concerning the form and shape of several psychometric functions. Software describing the methods is available (http://www.bootstrap-software.com/psignifit/), as well as articles describing the methods in detail (Wichmann&Hill, Perception&Psychophysics, 2001a,b).

ei

[BibTex]

[BibTex]


no image
Optimal linear estimation of self-motion - a real-world test of a model of fly tangential neurons

Franz, MO.

SAB 02 Workshop, Robotics as theoretical biology, 7th meeting of the International Society for Simulation of Adaptive Behaviour (SAB), (Editors: Prescott, T.; Webb, B.), 2002 (poster)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion (see example in Fig.1). We examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor that can be moved along three translational and one rotational degree of freedom. The experiments indicate that the proposed approach yields accurate results for rotation estimates, independently of the current translation and scene layout. Translation estimates, however, turned out to be sensitive to simultaneous rotation and to the particular distance distribution of the scene. The gantry experiments confirm that the receptive field organization of the tangential neurons allows them, as an ensemble, to extract self-motion from the optic flow.

ei

PDF [BibTex]

PDF [BibTex]


no image
Untersuchungen zur Spindynamik in nanostrukturierten ferromagnetischen Schichtsystemen

Puzic, A.

Universität Stuttgart, Stuttgart, 2002 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetic Imaging of Nanostructured Systems with Transmission X-Ray Microscopy

Eimüller, T.

Bayrische Julius-Maximilians-Universität Würzburg, Würzburg, 2002 (phdthesis)

mms

[BibTex]

[BibTex]