Header logo is


2018


Thumb xl tslip
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, O.

Dynamic Walking Conference, May 2018 (talk)

Abstract
Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.

dlg

Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) Project Page [BibTex]


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

ics

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

ei

[BibTex]

[BibTex]

2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

ei

PDF [BibTex]

PDF [BibTex]


no image
Computing with Uncertainty

Hennig, P.

2017 (mpi_year_book)

Abstract
Machine learning requires computer hardware to reliable and efficiently compute estimations for ever more complex and fundamentally incomputable quantities. A research team at MPI for Intelligent Systems in Tübingen develops new algorithms which purposely lower the precision of computations and return an explicit measure of uncertainty over the correct result alongside the estimate. Doing so allows for more flexible management of resources, and increases the reliability of intelligent systems.

link (url) DOI [BibTex]


no image
Biomechanics and Locomotion Control in Legged Animals and Legged Robots

Sproewitz, A., Heim, S.

2017 (mpi_year_book)

Abstract
An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.

link (url) DOI [BibTex]


Thumb xl 9780262036436
Mobile Microrobotics

Sitti, M.

Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)

Abstract
Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

pi

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]


no image
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)

Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.

Dagstuhl Reports, 6(11):142-167, 2017 (book)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]

2015


no image
Diversity of sharp wave-ripples in the CA1 of the macaque hippocampus and their brain wide signatures

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), October 2015 (poster)

ei

link (url) [BibTex]

2015


link (url) [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Retrospective rigid motion correction of undersampled MRI data

Loktyushin, A., Babayeva, M., Gallichan, D., Krueger, G., Scheffler, K., Kober, T.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

ei

[BibTex]

[BibTex]


no image
Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J. R.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

ei

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Learning robots

Trimpe, S.

2015 (mpi_year_book)

Abstract
An exploded power plant, collapsed buildings after an earthquake, a burning vehicle loaded with hazardous goods – all of these are dangerous situations for human emergency responders. What if we could send robots instead of humans? Researchers at the Autonomous Motion Department work on fundamental principles required to build intelligent robots which one day can help us in dangerous situations. A key requirement for making this happen is that robots must be enabled to learn.

link (url) [BibTex]


no image
Disparity estimation from a generative light field model

Köhler, R., Schölkopf, B., Hirsch, M.

IEEE International Conference on Computer Vision (ICCV 2015), Workshop on Inverse Rendering, 2015, Note: This work has been presented as a poster and is not included in the workshop proceedings. (poster)

ei

[BibTex]

[BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The smallest human-made nano-motor

Sánchez, Samuel

2015 (mpi_year_book)

Abstract
Tiny self-propelled motors which speed through the water and clean up pollutions along the way or small robots which can swim effortlessly through blood to one day transport medication to a certain part of the body – this sounds like taken from a science fiction movie script. However, Samuel Sánchez is already hard at work in his lab at the Max Planck Institute for Intelligent Systems in Stuttgart to make these visions come true. Self-propelled micro-nanorobots and the usage as integrated sensors in microfluid-chips: that’s the topic of Sánchez` research group.

link (url) [BibTex]

link (url) [BibTex]

2014


Thumb xl thumb 9780262028370
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

ps

publisher link (url) [BibTex]

2014


publisher link (url) [BibTex]


no image
Dynamical source analysis of hippocampal sharp-wave ripple episodes

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Bernstein Conference, 2014 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J., Peters, J.

97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

ei

DOI [BibTex]

DOI [BibTex]


no image
Unsupervised identification of neural events in local field potentials

Besserve, M., Schölkopf, B., Logothetis, N. K.

44th Annual Meeting of the Society for Neuroscience (Neuroscience), 2014 (talk)

ei

[BibTex]

[BibTex]


no image
Quantifying statistical dependency

Besserve, M.

Research Network on Learning Systems Summer School, 2014 (talk)

ei

[BibTex]

[BibTex]


no image
FID-guided retrospective motion correction based on autofocusing

Babayeva, M., Loktyushin, A., Kober, T., Granziera, C., Nickisch, H., Gruetter, R., Krueger, G.

Joint Annual Meeting ISMRM-ESMRMB, Milano, Italy, 2014 (poster)

ei

[BibTex]

[BibTex]


no image
Cluster analysis of sharp-wave ripple field potential signatures in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Computational and Systems Neuroscience Meeting (COSYNE), 2014 (poster)

ei

[BibTex]

[BibTex]


no image
Exploring complex diseases with intelligent systems

Borgwardt, K.

2014 (mpi_year_book)

Abstract
Physicians are collecting an ever increasing amount of data describing the health state of their patients. Is new knowledge about diseases hidden in this data, which could lead to better therapies? The field of Machine Learning in Biomedicine is concerned with the development of approaches which help to gain such insights from massive biomedical data.

link (url) [BibTex]


no image
The cellular life-death decision – how mitochondrial membrane proteins can determine cell fate

García-Sáez, Ana J.

2014 (mpi_year_book)

Abstract
Living organisms have a very effective method for eliminating cells that are no longer needed: programmed death. Researchers in the group of Ana García Sáez work with a protein called Bax, a key regulator of apoptosis that creates pores with a flexible diameter inside the outer mitochondrial membrane. This step inevitably triggers the final death of the cell. These insights into the role of important key enzymes in setting off apoptosis could provide useful for developing drugs that can directly influence apoptosis.

link (url) [BibTex]

2003


no image
Texture and haptic cues in slant discrimination: Measuring the effect of texture type on cue combination

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

Journal of Vision, 3(12):26, 2003 Fall Vision Meeting of the Optical Society of America, December 2003 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The influence of each cue in such average depends on the reliability of the source of information. (Young, Landy, & Maloney, 1993; Ernst & Banks, 2002.) In particular, Ernst & Banks (2002) formulate the combination performed by the human brain as that of the minimum variance unbiased estimator that can be constructed from the available cues. Using slant discrimination and slant judgment via probe adjustment as tasks, we have observed systematic differences in performance of human observers when a number of different types of textures were used as cue to slant (Rosas, Wichmann & Wagemans, 2003). If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. We have combined these texture types with object motion but the obtained results are difficult to reconcile with the unbiased minimum variance estimator model (Rosas & Wagemans, 2003). This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, & Landy (2002) have shown that while for between-modality combination the human visual system has access to the single-cue information, for within-modality combination (visual cues: disparity and texture) the single-cue information is lost, suggesting a coupling between these cues. Then, in the present study we combine the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition the texture cue and the haptic cue to slant are combined as predicted by an unbiased, minimum variance estimator model.

ei

Web DOI [BibTex]

2003


Web DOI [BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Rademacher and Gaussian averages in Learning Theory

Bousquet, O.

Universite de Marne-la-Vallee, March 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Phase Information and the Recognition of Natural Images

Braun, D., Wichmann, F., Gegenfurtner, K.

6, pages: 138, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Fourier phase plays an important role in determining image structure. For example, when the phase spectrum of an image showing a ower is swapped with the phase spectrum of an image showing a tank, then we will usually perceive a tank in the resulting image, even though the amplitude spectrum is still that of the ower. Also, when the phases of an image are randomly swapped across frequencies, the resulting image becomes impossible to recognize. Our goal was to evaluate the e ect of phase manipulations in a more quantitative manner. On each trial subjects viewed two images of natural scenes. The subject had to indicate which one of the two images contained an animal. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was uniformly distributed in the interval [;+], where  was varied between 0 degree and 180 degrees. Image pairs were displayed for 100 msec. Subjects were remarkably resistant to the addition of phase noise. Even with [120; 120] degree noise, subjects still were at a level of 75% correct. The introduction of phase noise leads to a reduction of image contrast. Subjects were slightly better than a simple prediction based on this contrast reduction. However, when contrast response functions were measured in the same experimental paradigm, we found that performance in the phase noise experiment was signi cantly lower than that predicted by the corresponding contrast reduction.

ei

Web [BibTex]

Web [BibTex]


no image
Introduction: Robots with Cognition?

Franz, MO.

6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

Abstract
Using robots as models of cognitive behaviour has a long tradition in robotics. Parallel to the historical development in cognitive science, one observes two major, subsequent waves in cognitive robotics. The first is based on ideas of classical, cognitivist Artificial Intelligence (AI). According to the AI view of cognition as rule-based symbol manipulation, these robots typically try to extract symbolic descriptions of the environment from their sensors that are used to update a common, global world representation from which, in turn, the next action of the robot is derived. The AI approach has been successful in strongly restricted and controlled environments requiring well-defined tasks, e.g. in industrial assembly lines. AI-based robots mostly failed, however, in the unpredictable and unstructured environments that have to be faced by mobile robots. This has provoked the second wave in cognitive robotics which tries to achieve cognitive behaviour as an emergent property from the interaction of simple, low-level modules. Robots of the second wave are called animats as their architecture is designed to closely model aspects of real animals. Using only simple reactive mechanisms and Hebbian-type or evolutionary learning, the resulting animats often outperformed the highly complex AI-based robots in tasks such as obstacle avoidance, corridor following etc. While successful in generating robust, insect-like behaviour, typical animats are limited to stereotyped, fixed stimulus-response associations. If one adopts the view that cognition requires a flexible, goal-dependent choice of behaviours and planning capabilities (H.A. Mallot, Kognitionswissenschaft, 1999, 40-48) then it appears that cognitive behaviour cannot emerge from a collection of purely reactive modules. It rather requires environmentally decoupled structures that work without directly engaging the actions that it is concerned with. This poses the current challenge to cognitive robotics: How can we build cognitive robots that show the robustness and the learning capabilities of animats without falling back into the representational paradigm of AI? The speakers of the symposium present their approaches to this question in the context of robot navigation and sensorimotor learning. In the first talk, Prof. Helge Ritter introduces a robot system for imitation learning capable of exploring various alternatives in simulation before actually performing a task. The second speaker, Angelo Arleo, develops a model of spatial memory in rat navigation based on his electrophysiological experiments. He validates the model on a mobile robot which, in some navigation tasks, shows a performance comparable to that of the real rat. A similar model of spatial memory is used to investigate the mechanisms of territory formation in a series of robot experiments presented by Prof. Hanspeter Mallot. In the last talk, we return to the domain of sensorimotor learning where Ralf M{\"o}ller introduces his approach to generate anticipatory behaviour by learning forward models of sensorimotor relationships.

ei

Web [BibTex]

Web [BibTex]


no image
Constraints measures and reproduction of style in robot imitation learning

Bakir, GH., Ilg, W., Franz, MO., Giese, M.

6, pages: 70, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning is frequently discussed as a method for generating complex behaviors in robots by imitating human actors. The kinematic and the dynamic properties of humans and robots are typically quite di erent, however. For this reason observed human trajectories cannot be directly transferred to robots, even if their geometry is humanoid. Instead the human trajectory must be approximated by trajectories that can be realized by the robot. During this approximation deviations from the human trajectory may arise that change the style of the executed movement. Alternatively, the style of the movement might be well reproduced, but the imitated trajectory might be suboptimal with respect to di erent constraint measures from robotics control, leading to non-robust behavior. Goal of the presented work is to quantify this trade-o between \imitation quality" and constraint compatibility for the imitation of complex writing movements. In our experiment, we used trajectory data from human writing movements (see the abstract of Ilg et al. in this volume). The human trajectories were mapped onto robot trajectories by minimizing an error measure that integrates constraints that are important for the imitation of movement style and a regularizing constraint that ensures smooth joint trajectories with low velocities. In a rst experiment, both the end-e ector position and the shoulder angle of the robot were optimized in order to achieve good imitation together with accurate control of the end-e ector position. In a second experiment only the end-e ector trajectory was imitated whereas the motion of the elbow joint was determined using the optimal inverse kinematic solution for the robot. For both conditions di erent constraint measures (dexterity and relative jointlimit distances) and a measure for imitation quality were assessed. By controling the weight of the regularization term we can vary continuously between robot behavior optimizing imitation quality, and behavior minimizing joint velocities.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Study of Human Classification using Psychophysics and Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

6, pages: 149, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), Febuary 2003 (poster)

Abstract
We attempt to reach a better understanding of classi cation in humans using both psychophysical and machine learning techniques. In our psychophysical paradigm the stimuli presented to the human subjects are modi ed using machine learning algorithms according to their responses. Frontal views of human faces taken from a processed version of the MPI face database are employed for a gender classi cation task. The processing assures that all heads have same mean intensity, same pixel-surface area and are centered. This processing stage is followed by a smoothing of the database in order to eliminate, as much as possible, scanning artifacts. Principal Component Analysis is used to obtain a low-dimensional representation of the faces in the database. A subject is asked to classify the faces and experimental parameters such as class (i.e. female/male), con dence ratings and reaction times are recorded. A mean classi cation error of 14.5% is measured and, on average, 0.5 males are classi ed as females and 21.3females as males. The mean reaction time for the correctly classi ed faces is 1229 +- 252 [ms] whereas the incorrectly classi ed faces have a mean reaction time of 1769 +- 304 [ms] showing that the reaction times increase with the subject's classi- cation error. Reaction times are also shown to decrease with increasing con dence, both for the correct and incorrect classi cations. Classi cation errors, reaction times and con dence ratings are then correlated to concepts of machine learning such as separating hyperplane obtained when considering Support Vector Machines, Relevance Vector Machines, boosted Prototype and K-means Learners. Elements near the separating hyperplane are found to be classi ed with more errors than those away from it. In addition, the subject's con dence increases when moving away from the hyperplane. A preliminary analysis on the available small number of subjects indicates that K-means classi cation seems to re ect the subject's classi cation behavior best. The above learnersare then used to generate \special" elements, or representations, of the low-dimensional database according to the labels given by the subject. A memory experiment follows where the representations are shown together with faces seen or unseen during the classi cation experiment. This experiment aims to assess the representations by investigating whether some representations, or special elements, are classi ed as \seen before" despite that they never appeared in the classi cation experiment, possibly hinting at their use during human classi cation.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Representation of Complex Movement Sequences Based on Hierarchical Spatio-Temporal Correspondence for Imitation Learning in Robotics

Ilg, W., Bakir, GH., Franz, MO., Giese, M.

6, pages: 74, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning of complex movements has become a popular topic in neuroscience, as well as in robotics. A number of conceptual as well as practical problems are still unsolved. One example is the determination of the aspects of movements which are relevant for imitation. Problems concerning the movement representation are twofold: (1) The movement characteristics of observed movements have to be transferred from the perceptual level to the level of generated actions. (2) Continuous spaces of movements with variable styles have to be approximated based on a limited number of learned example sequences. Therefore, one has to use representation with a high generalisation capability. We present methods for the representation of complex movement sequences that addresses these questions in the context of the imitation learning of writing movements using a robot arm with human-like geometry. For the transfer of complex movements from perception to action we exploit a learning-based method that represents complex action sequences by linear combination of prototypical examples (Ilg and Giese, BMCV 2002). The method of hierarchical spatio-temporal morphable models (HSTMM) decomposes action sequences automatically into movement primitives. These primitives are modeled by linear combinations of a small number of learned example trajectories. The learned spatio-temporal models are suitable for the analysis and synthesis of long action sequences, which consist of movement primitives with varying style parameters. The proposed method is illustrated by imitation learning of complex writing movements. Human trajectories were recorded using a commercial motion capture system (VICON). In the rst step the recorded writing sequences are decomposed into movement primitives. These movement primitives can be analyzed and changed in style by de ning linear combinations of prototypes with di erent linear weight combinations. Our system can imitate writing movements of di erent actors, synthesize new writing styles and can even exaggerate the writing movements of individual actors. Words and writing movements of the robot look very natural, and closely match the natural styles. These preliminary results makes the proposed method promising for further applications in learning-based robotics. In this poster we focus on the acquisition of the movement representation (identi cation and segmentation of movement primitives, generation of new writing styles by spatio-temporal morphing). The transfer of the generated writing movements to the robot considering the given kinematic and dynamic constraints is discussed in Bakir et al (this volume).

ei

PDF Web [BibTex]

PDF Web [BibTex]