Header logo is


2015


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

ei

[BibTex]

2015


[BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl mt cover
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

ei

[BibTex]

[BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

am ics

[BibTex]

[BibTex]


Thumb xl thesis bild
Object Detection Using Deep Learning - Learning where to search using visual attention

Kloss, A.

Eberhard Karls Universität Tübingen, May 2015 (mastersthesis)

Abstract
Detecting and identifying the different objects in an image fast and reliably is an important skill for interacting with one’s environment. The main problem is that in theory, all parts of an image have to be searched for objects on many different scales to make sure that no object instance is missed. It however takes considerable time and effort to actually classify the content of a given image region and both time and computational capacities that an agent can spend on classification are limited. Humans use a process called visual attention to quickly decide which locations of an image need to be processed in detail and which can be ignored. This allows us to deal with the huge amount of visual information and to employ the capacities of our visual system efficiently. For computer vision, researchers have to deal with exactly the same problems, so learning from the behaviour of humans provides a promising way to improve existing algorithms. In the presented master’s thesis, a model is trained with eye tracking data recorded from 15 participants that were asked to search images for objects from three different categories. It uses a deep convolutional neural network to extract features from the input image that are then combined to form a saliency map. This map provides information about which image regions are interesting when searching for the given target object and can thus be used to reduce the parts of the image that have to be processed in detail. The method is based on a recent publication of Kümmerer et al., but in contrast to the original method that computes general, task independent saliency, the presented model is supposed to respond differently when searching for different target categories.

am

PDF Project Page [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl picture for website
Robot Arm Tracking with Random Decision Forests

Widmaier, F.

Eberhard-Karls-Universität Tübingen, May 2015 (mastersthesis)

Abstract
For grasping and manipulation with robot arms, knowing the current pose of the arm is crucial for successful controlling its motion. Often, pose estimations can be acquired from encoders inside the arm, but they can have significant inaccuracy which makes the use of additional techniques necessary. In this master thesis, a novel approach of robot arm pose estimation is presented, that works on single depth images without the need of prior foreground segmentation or other preprocessing steps. A random regression forest is used, which is trained only on synthetically generated data. The approach improves former work by Bohg et al. by considerably reducing the computational effort both at training and test time. The forest in the new method directly estimates the desired joint angles while in the former approach, the forest casts 3D position votes for the joints, which then have to be clustered and fed into an iterative inverse kinematic process to finally get the joint angles. To improve the estimation accuracy, the standard training objective of the forest training is replaced by a specialized function that makes use of a model-dependent distance metric, called DISP. Experimental results show that the specialized objective indeed improves pose estimation and it is shown that the method, despite of being trained on synthetic data only, is able to provide reasonable estimations for real data at test time.

am

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl silvia phd
Shape Models of the Human Body for Distributed Inference

Zuffi, S.

Brown University, May 2015 (phdthesis)

Abstract
In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can be applied to generic deformable and articulated objects. To address efficiency, we constrain our models to be part-based and have a tree-structured representation with pairwise relationships between connected parts. This allows the application of methods for distributed inference based on message passing. To address realism, we exploit recent advances in computer graphics that represent the human body with statistical shape models learned from 3D scans. We introduce two articulated body models, a 2D model, named Deformable Structures (DS), which is a contour-based model parameterized for 2D pose and projected shape, and a 3D model, named Stitchable Puppet (SP), which is a mesh-based model parameterized for 3D pose, pose-dependent deformations and intrinsic body shape. We have successfully applied the models to interesting and challenging problems in computer vision and computer graphics, namely pose estimation from static images, pose estimation from video sequences, pose and shape estimation from 3D scan data. This advances the state of the art in human pose and shape estimation and suggests that carefully de ned realistic models can be important for computer vision. More work at the intersection of vision and graphics is thus encouraged.

ps

PDF [BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

ei

[BibTex]

[BibTex]


Thumb xl th teaser
From Scans to Models: Registration of 3D Human Shapes Exploiting Texture Information

Bogo, F.

University of Padova, March 2015 (phdthesis)

Abstract
New scanning technologies are increasing the importance of 3D mesh data, and of algorithms that can reliably register meshes obtained from multiple scans. Surface registration is important e.g. for building full 3D models from partial scans, identifying and tracking objects in a 3D scene, creating statistical shape models. Human body registration is particularly important for many applications, ranging from biomedicine and robotics to the production of movies and video games; but obtaining accurate and reliable registrations is challenging, given the articulated, non-rigidly deformable structure of the human body. In this thesis, we tackle the problem of 3D human body registration. We start by analyzing the current state of the art, and find that: a) most registration techniques rely only on geometric information, which is ambiguous on flat surface areas; b) there is a lack of adequate datasets and benchmarks in the field. We address both issues. Our contribution is threefold. First, we present a model-based registration technique for human meshes that combines geometry and surface texture information to provide highly accurate mesh-to-mesh correspondences. Our approach estimates scene lighting and surface albedo, and uses the albedo to construct a high-resolution textured 3D body model that is brought into registration with multi-camera image data using a robust matching term. Second, by leveraging our technique, we present FAUST (Fine Alignment Using Scan Texture), a novel dataset collecting 300 high-resolution scans of 10 people in a wide range of poses. FAUST is the first dataset providing both real scans and automatically computed, reliable "ground-truth" correspondences between them. Third, we explore possible uses of our approach in dermatology. By combining our registration technique with a melanocytic lesion segmentation algorithm, we propose a system that automatically detects new or evolving lesions over almost the entire body surface, thus helping dermatologists identify potential melanomas. We conclude this thesis investigating the benefits of using texture information to establish frame-to-frame correspondences in dynamic monocular sequences captured with consumer depth cameras. We outline a novel approach to reconstruct realistic body shape and appearance models from dynamic human performances, and show preliminary results on challenging sequences captured with a Kinect.

ps

[BibTex]


Thumb xl thesis teaser
Long Range Motion Estimation and Applications

Sevilla-Lara, L.

Long Range Motion Estimation and Applications, University of Massachusetts Amherst, University of Massachusetts Amherst, Febuary 2015 (phdthesis)

Abstract
Finding correspondences between images underlies many computer vision problems, such as optical flow, tracking, stereovision and alignment. Finding these correspondences involves formulating a matching function and optimizing it. This optimization process is often gradient descent, which avoids exhaustive search, but relies on the assumption of being in the basin of attraction of the right local minimum. This is often the case when the displacement is small, and current methods obtain very accurate results for small motions. However, when the motion is large and the matching function is bumpy this assumption is less likely to be true. One traditional way of avoiding this abruptness is to smooth the matching function spatially by blurring the images. As the displacement becomes larger, the amount of blur required to smooth the matching function becomes also larger. This averaging of pixels leads to a loss of detail in the image. Therefore, there is a trade-off between the size of the objects that can be tracked and the displacement that can be captured. In this thesis we address the basic problem of increasing the size of the basin of attraction in a matching function. We use an image descriptor called distribution fields (DFs). By blurring the images in DF space instead of in pixel space, we in- crease the size of the basin attraction with respect to traditional methods. We show competitive results using DFs both in object tracking and optical flow. Finally we demonstrate an application of capturing large motions for temporal video stitching.

ps

[BibTex]

[BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Strukturelle und spektroskopische Eigenschaften epitaktischer FeMn/Co Exchange-Bias-Systeme

Schmidt, M.

Universität Stuttgart, Stuttgart, 2015 (phdthesis)

mms

link (url) DOI [BibTex]


no image
Ultraschnelles Vortexkernschalten

Noske, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Investigations of unusual hard magnetic MnBi LTP phase, utilizing temperature dependent SQUID-FORC

Muralidhar, Shreyas

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetische Röntgenmikroskopie an Hochtemperatur-Supraleitern

Stahl, C.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2015 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Voltage-induced magnetic manipulation of a microstructured iron gold multilayer system

Sittig, Robert

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Transfer of angular momentum from the spin system to the lattice during ultrafast magnetization

Tsatsoulis, T.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Quantum kinetic theory of ultrafast demagnetization by electron-phonon scattering

Briones Paz, J. Z.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]

2005


no image
Some thoughts about Gaussian Processes

Chapelle, O.

NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

ei

PDF Web [BibTex]

2005


PDF Web [BibTex]


no image
Extension to Kernel Dependency Estimation with Applications to Robotics

BakIr, G.

Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)

Abstract
Kernel Dependency Estimation(KDE) is a novel technique which was designed to learn mappings between sets without making assumptions on the type of the involved input and output data. It learns the mapping in two stages. In a first step, it tries to estimate coordinates of a feature space representation of elements of the set by solving a high dimensional multivariate regression problem in feature space. Following this, it tries to reconstruct the original representation given the estimated coordinates. This thesis introduces various algorithmic extensions to both stages in KDE. One of the contributions of this thesis is to propose a novel linear regression algorithm that explores low-dimensional subspaces during learning. Furthermore various existing strategies for reconstructing patterns from feature maps involved in KDE are discussed and novel pre-image techniques are introduced. In particular, pre-image techniques for data-types that are of discrete nature such as graphs and strings are investigated. KDE is then explored in the context of robot pose imitation where the input is a an image with a human operator and the output is the robot articulated variables. Thus, using KDE, robot pose imitation is formulated as a regression problem.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Geometrical aspects of statistical learning theory

Hein, M.

Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Methods for Brain-Computer Interdaces

Lal, TN.

Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

The 22nd International Conference on Machine Learning (ICML), August 2005 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D.

The 22nd International Conference on Machine Learning, August 2005 (talk)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PDF [BibTex]

PDF [BibTex]


no image
Machine-Learning Approaches to BCI in Tübingen

Bensch, M., Bogdan, M., Hill, N., Lal, T., Rosenstiel, W., Schölkopf, B., Schröder, M.

Brain-Computer Interface Technology, June 2005, Talk given by NJH. (talk)

ei

[BibTex]

[BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, TG.

Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)

Abstract
A common task in psychophysics is to measure the psychometric function. A psychometric function can be described by its shape and four parameters: offset or threshold, slope or width, false alarm rate or chance level and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. A new Bayesian adaptive psychometric method placing trials by minimising the expected entropy of the posterior probabilty dis- tribution over a set of possible stimuli is introduced. The method is more flexible, faster and at least as efficient as the established method (Kontsevich and Tyler, 1999). Comparably accurate (2dB) threshold and slope estimates can be obtained after about 30 and 500 trials, respectively. By using a dynamic termination criterion the efficiency can be further improved. The method can be applied to all experimental designs including yes/no designs and allows acquisition of any set of free parameters. By weighting the importance of parameters one can include nuisance parameters and adjust the relative expected errors. Use of nuisance parameters may lead to more accurate estimates than assuming a guessed fixed value. Block designs are supported and do not harm the performance if a sufficient number of trials are performed. The method was evaluated by computer simulations in which the role of parametric assumptions, its robustness, the quality of different point estimates, the effect of dynamic termination criteria and many other settings were investigated.

ei

[BibTex]

[BibTex]


no image
Kernel Constrained Covariance for Dependence Measurement

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Belitski, A., Augath, M., Murayama, Y., Schölkopf, B., Logothetis, N.

AISTATS, January 2005 (talk)

Abstract
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth. All current kernel-based independence tests share this behaviour. We demonstrate exponential convergence between the population and empirical COCO. Finally, we use COCO as a measure of joint neural activity between voxels in MRI recordings of the macaque monkey, and compare the results to the mutual information and the correlation. We also show the effect of removing breathing artefacts from the MRI recording.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Untersuchung über die Grenzflächenmagnetisierung an (FM) Kobalt- und (AFM) Eisen-Mangan-Schichten

Harlander, M.

Stuttgart, Universität Stuttgart, 2005 (mastersthesis)

mms

[BibTex]

[BibTex]

2003


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

ei

[BibTex]

2003


[BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Rademacher and Gaussian averages in Learning Theory

Bousquet, O.

Universite de Marne-la-Vallee, March 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Introduction: Robots with Cognition?

Franz, MO.

6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

Abstract
Using robots as models of cognitive behaviour has a long tradition in robotics. Parallel to the historical development in cognitive science, one observes two major, subsequent waves in cognitive robotics. The first is based on ideas of classical, cognitivist Artificial Intelligence (AI). According to the AI view of cognition as rule-based symbol manipulation, these robots typically try to extract symbolic descriptions of the environment from their sensors that are used to update a common, global world representation from which, in turn, the next action of the robot is derived. The AI approach has been successful in strongly restricted and controlled environments requiring well-defined tasks, e.g. in industrial assembly lines. AI-based robots mostly failed, however, in the unpredictable and unstructured environments that have to be faced by mobile robots. This has provoked the second wave in cognitive robotics which tries to achieve cognitive behaviour as an emergent property from the interaction of simple, low-level modules. Robots of the second wave are called animats as their architecture is designed to closely model aspects of real animals. Using only simple reactive mechanisms and Hebbian-type or evolutionary learning, the resulting animats often outperformed the highly complex AI-based robots in tasks such as obstacle avoidance, corridor following etc. While successful in generating robust, insect-like behaviour, typical animats are limited to stereotyped, fixed stimulus-response associations. If one adopts the view that cognition requires a flexible, goal-dependent choice of behaviours and planning capabilities (H.A. Mallot, Kognitionswissenschaft, 1999, 40-48) then it appears that cognitive behaviour cannot emerge from a collection of purely reactive modules. It rather requires environmentally decoupled structures that work without directly engaging the actions that it is concerned with. This poses the current challenge to cognitive robotics: How can we build cognitive robots that show the robustness and the learning capabilities of animats without falling back into the representational paradigm of AI? The speakers of the symposium present their approaches to this question in the context of robot navigation and sensorimotor learning. In the first talk, Prof. Helge Ritter introduces a robot system for imitation learning capable of exploring various alternatives in simulation before actually performing a task. The second speaker, Angelo Arleo, develops a model of spatial memory in rat navigation based on his electrophysiological experiments. He validates the model on a mobile robot which, in some navigation tasks, shows a performance comparable to that of the real rat. A similar model of spatial memory is used to investigate the mechanisms of territory formation in a series of robot experiments presented by Prof. Hanspeter Mallot. In the last talk, we return to the domain of sensorimotor learning where Ralf M{\"o}ller introduces his approach to generate anticipatory behaviour by learning forward models of sensorimotor relationships.

ei

Web [BibTex]

Web [BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

ei

[BibTex]

[BibTex]