Header logo is


2018


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration (4 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
For simple and realistic vibrotactile feedback, 3D accelerations from real contact interactions are usually rendered using a single-axis vibration actuator; this dimensional reduction can be performed in many ways. This demonstration implements a real-time conversion system that simultaneously measures 3D accelerations and renders corresponding 1D vibrations using a two-pen interface. In the demonstration, a user freely interacts with various objects using an In-Pen that contains a 3-axis accelerometer. The captured accelerations are converted to a single-axis signal, and an Out-Pen renders the reduced signal for the user to feel. We prepared seven conversion methods from the simple use of a single-axis signal to applying principal component analysis (PCA) so that users can compare the performance of each conversion method in this demonstration.

hi

Project Page [BibTex]

2018


Project Page [BibTex]


Thumb xl representative image2
A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

Hands-on demonstration (3 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
Large-scale tactile sensing is important for household robots and human-robot interaction because contacts can occur all over a robot’s body surface. This paper presents a new fabric-based tactile sensor that is straightforward to manufacture and can cover a large area. The tactile sensor is made of conductive and non-conductive fabric layers, and the electrodes are stitched with conductive thread, so the resulting device is flexible and stretchable. The sensor utilizes internal array electrodes and a reconstruction method called electrical resistance tomography (ERT) to achieve a high spatial resolution with a small number of electrodes. The developed sensor shows that only 16 electrodes can accurately estimate single and multiple contacts over a square that measures 20 cm by 20 cm.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl encyclop med robotics
Nanoscale robotic agents in biological fluids and tissues

Palagi, S., Walker, D. Q. T., Fischer, P.

In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

Abstract
Nanorobots are untethered structures of sub-micron size that can be controlled in a non-trivial way. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this chapter, we first discuss potential medical applications of motile nanorobots. We briefly present the challenges related to swimming at such small scales and we survey the rheological properties of some biological fluids and tissues. We then review recent experimental results in the development of nanorobots and in particular their design, fabrication, actuation, and propulsion in complex biological fluids and tissues. Recent work shows that their nanoscale dimension is a clear asset for operation in biological tissues, since many biological tissues consist of networks of macromolecules that prevent the passage of larger micron-scale structures, but contain dynamic pores through which nanorobots can move.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl teaser ps hi
Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Extended abstract presented at the Hand, Brain and Technology conference (HBT), Ascona, Switzerland, August 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction, even though these are essential parameters for controlling wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning (3D over time) and modelling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution while simultaneously recording the interfacial forces at the contact. Preliminary results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion and proximal/distal bending, deformations that cannot be captured by imaging of the contact area alone. Therefore, we are currently capturing a dataset that will enable us to create a statistical model of the finger’s deformations and predict the contact forces induced by tactile interaction with objects. This technique could improve current methods for tactile rendering in wearable haptic devices, which rely on general physical modelling of the skin’s compliance, by developing an accurate model of the variations in finger properties across the human population. The availability of such a model will also enable a more realistic simulation of virtual finger behaviour in virtual reality (VR) environments, as well as the ability to accurately model a specific user’s finger from lower resolution data. It may also be relevant for inferring the physical properties of the underlying tissue from observing the surface mesh deformations, as previously shown for body tissues.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl toc image
A machine from machines

Fischer, P.

Nature Physics, 14, pages: 1072–1073, July 2018 (misc)

Abstract
Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block -- a colloid that self-propels.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
In this demonstration, you will hold two pen-shaped modules: an in-pen and an out-pen. The in-pen is instrumented with a high-bandwidth three-axis accelerometer, and the out-pen contains a one-axis voice coil actuator. Use the in-pen to interact with different surfaces; the measured 3D accelerations are continually converted into 1D vibrations and rendered with the out-pen for you to feel. You can test conversion methods that range from simply selecting a single axis to applying a discrete Fourier transform or principal component analysis for realistic and brisk real-time conversion.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptipedia: Exploring Haptic Device Design Through Interactive Visualizations

Seifi, H., Fazlollahi, F., Park, G., Kuchenbecker, K. J., MacLean, K. E.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
How many haptic devices have been proposed in the last 30 years? How can we leverage this rich source of design knowledge to inspire future innovations? Our goal is to make historical haptic invention accessible through interactive visualization of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. In this demonstration, participants can explore Haptipedia’s growing library of grounded force feedback devices through several prototype visualizations, interact with 3D simulations of the device mechanisms and movements, and tell us about the attributes and devices that could make Haptipedia a useful resource for the haptic design community.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl koala
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the RSS Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Delivering 6-DOF Fingertip Tactile Cues

Young, E., Kuchenbecker, K. J.

Work-in-progress paper (5 pages) presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Soft Multi-Axis Boundary-Electrode Tactile Sensors for Whole-Body Robotic Skin

Lee, H., Kim, J., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the RSS Pioneers Workshop, Pittsburgh, USA, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptics and Haptic Interfaces

Kuchenbecker, K. J.

In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)

Abstract
Haptics is an interdisciplinary field that seeks to both understand and engineer touch-based interaction. Although a wide range of systems and applications are being investigated, haptics researchers often concentrate on perception and manipulation through the human hand. A haptic interface is a mechatronic system that modulates the physical interaction between a human and his or her tangible surroundings. Haptic interfaces typically involve mechanical, electrical, and computational layers that work together to sense user motions or forces, quickly process these inputs with other information, and physically respond by actuating elements of the user’s surroundings, thereby enabling him or her to act on and feel a remote and/or virtual environment.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl tslip
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, O.

Dynamic Walking Conference, May 2018 (talk)

Abstract
Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.

dlg

Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) Project Page [BibTex]


no image
Arm-Worn Tactile Displays

Kuchenbecker, K. J.

Cross-Cutting Challenge Interactive Discussion presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Fingertips and hands captivate the attention of most haptic interface designers, but humans can feel touch stimuli across the entire body surface. Trying to create devices that both can be worn and can deliver good haptic sensations raises challenges that rarely arise in other contexts. Most notably, tactile cues such as vibration, tapping, and squeezing are far simpler to implement in wearable systems than kinesthetic haptic feedback. This interactive discussion will present a variety of relevant projects to which I have contributed, attempting to pull out common themes and ideas for the future.

hi

[BibTex]

[BibTex]


Thumb xl wireframe main
Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers

Seifi, H., MacLean, K. E., Kuchenbecker, K. J., Park, G.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Much of three decades of haptic device invention is effectively lost to today’s designers: dispersion across time, region, and discipline imposes an incalculable drag on innovation in this field. Our goal is to make historical haptic invention accessible through interactive navigation of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. To build this open resource, we will systematically mine the literature and engage the haptics community for expert annotation. In a multi-year broad-based initiative, we will empirically derive salient attributes of haptic devices, design an interactive visualization tool where device creators and repurposers can efficiently explore and search Haptipedia, and establish methods and tools to manually and algorithmically collect data from the haptics literature and our community of experts. This paper outlines progress in compiling an initial corpus of grounded force-feedback devices and their attributes, and it presents a concept sketch of the interface we envision.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Exercising with Baxter: Design and Evaluation of Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Workshop paper (6 pages) presented at the HRI Workshop on Personal Robots for Exercising and Coaching, Chicago, USA, March 2018 (misc)

Abstract
The worldwide population of older adults is steadily increasing and will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active and engaged while living at home. We developed eight human-robot exercise games for the Baxter Research Robot with the guidance of experts in game design, therapy, and rehabilitation. After extensive iteration, these games were employed in a user study that tested their viability with 20 younger and 20 older adult users. All participants were willing to enter Baxter’s workspace and physically interact with the robot. User trust and confidence in Baxter increased significantly between pre- and post-experiment assessments, and one individual from the target user population supplied us with abundant positive feedback about her experience. The preliminary results presented in this paper indicate potential for the use of two-armed human-scale robots for social-physical exercise interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl huggingpicture
Emotionally Supporting Humans Through Robot Hugs

Block, A. E., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the HRI Pioneers Workshop, Chicago, USA, March 2018 (misc)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, we want to enable robots to safely hug humans. This research strives to create and study a high fidelity robotic system that provides emotional support to people through hugs. This paper outlines our previous work evaluating human responses to a prototype’s physical and behavioral characteristics, and then it lays out our ongoing and future work.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser ps hi
Towards a Statistical Model of Fingertip Contact Deformations from 4D Data

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction even though this knowledge is essential to control wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning and modeling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution. The results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion of about 0.2 cm and proximal/distal bending of about 30◦, deformations that cannot be captured by imaging of the contact area alone. This project constitutes a first step towards an accurate statistical model of the finger’s behavior during haptic interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Can Humans Infer Haptic Surface Properties from Images?

Burka, A., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Human children typically experience their surroundings both visually and haptically, providing ample opportunities to learn rich cross-sensory associations. To thrive in human environments and interact with the real world, robots also need to build models of these cross-sensory associations; current advances in machine learning should make it possible to infer models from large amounts of data. We previously built a visuo-haptic sensing device, the Proton Pack, and are using it to collect a large database of matched multimodal data from tool-surface interactions. As a benchmark to compare with machine learning performance, we conducted a human subject study (n = 84) on estimating haptic surface properties (here: hardness, roughness, friction, and warmness) from images. Using a 100-surface subset of our database, we showed images to study participants and collected 5635 ratings of the four haptic properties, which we compared with ratings made by the Proton Pack operator and with physical data recorded using motion, force, and vibration sensors. Preliminary results indicate weak correlation between participant and operator ratings, but potential for matching up certain human ratings (particularly hardness and roughness) with features from the literature.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl coregpatentfig
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

ps

text [BibTex]


no image
Die kybernetische Revolution

Schölkopf, B.

15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Emission and propagation of multi-dimensional spin waves in anisotropic spin textures

Sluka, V., Schneider, T., Gallardo, R. A., Kakay, A., Weigand, M., Warnatz, T., Mattheis, R., Roldan-Molina, A., Landeros, P., Tiberkevich, V., Slavin, A., Schütz, G., Erbe, A., Deac, A., Lindner, J., Raabe, J., Fassbender, J., Wintz, S.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Thermal skyrmion diffusion applied in probabilistic computing

Zázvorka, J., Jakobs, F., Heinze, D., Keil, N., Kromin, S., Jaiswal, S., Litzius, K., Jakob, G., Virnau, P., Pinna, D., Everschor-Sitte, K., Donges, A., Nowak, U., Kläui, M.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]

2015


Thumb xl screen shot 2015 09 09 at 12.09.20
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

pi

DOI Project Page [BibTex]

2015


DOI Project Page [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

2015 (misc)

mms

link (url) [BibTex]

2011


no image
Projected Newton-type methods in machine learning

Schmidt, M., Kim, D., Sra, S.

In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

Abstract
We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and inexact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided throughout the chapter to illustrate machine learning applications of our framework.

ei

PDF Web [BibTex]

2011


PDF Web [BibTex]


no image
Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(SST15-05 ), 97th Scientific Assemble and Annual Meeting of the Radiological Society of North America (RSNA), December 2011 (talk)

Abstract
PURPOSE Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. We assess additional attenuation of the PET emission signals in the presence of oral and intraveneous (iv) MRCA made up of iron oxide and Gd-chelates, respectively. METHOD AND MATERIALS Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and integrated whole-body PET/MR (Biograph mMR, Siemens) using oral (Lumirem) and intraveneous (Gadovist) MRCA. Reference PET attenuation values were determined on a small-animal PET (Inveon, Siemens) using standard PET transmission imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% conc.), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs. The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1. PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction. RESULTS Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347. Lumirem had little effect on PET attenuation with (C3) being 13% and 10% higher than (C2) on PET/CT and PET/MR, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower than (Sy2) on PET/CT and 1.2% higher than (Sy2) on PET/MR. CONCLUSION MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

ei

Web [BibTex]

Web [BibTex]


no image
Cooperative Cuts: a new use of submodularity in image segmentation

Jegelka, S.

Second I.S.T. Austria Symposium on Computer Vision and Machine Learning, October 2011 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Effect of MR Contrast Agents on Quantitative Accuracy of PET in Combined Whole-Body PET/MR Imaging

Lois, C., Bezrukov, I., Schmidt, H., Schwenzer, N., Werner, M., Pichler, B., Kupferschläger, J., Beyer, T.

2011(MIC3-3), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
Combined whole-body PET/MR systems are being tested in clinical practice today. Integrated imaging protocols entail the use of MR contrast agents (MRCA) that could bias PET attenuation correction. In this work, we assess the effect of MRCA in PET/MR imaging. We analyze the effect of oral and intravenous MRCA on PET activity after attenuation correction. We conclude that in clinical scenarios, MRCA are not expected to lead to significant attenuation of PET signals, and that attenuation maps are not biased after the ingestion of adequate oral contrasts.

ei

Web [BibTex]

Web [BibTex]


no image
First Results on Patients and Phantoms of a Fully Integrated Clinical Whole-Body PET/MRI

Schmidt, H., Schwenzer, N., Bezrukov, I., Kolb, A., Mantlik, F., Kupferschläger, J., Lois, C., Sauter, A., Brendle, C., Pfannenberg, C., Pichler, B.

2011(J2-8), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
First clinical fully integrated whole-body PET/MR scanners are just entering the field. Here, we present studies toward quantification accuracy and variation within the PET field of view of small lesions from our BrainPET/MRI, a dedicated clinical brain scanner which was installed three years ago in Tbingen. Also, we present first results for patient and phantom scans of a fully integral whole-body PET/MRI, which was installed two months ago at our department. The quantification accuracy and homogeneity of the BrainPET-Insert (Siemens Medical Solutions, Germany) installed inside the magnet bore of a clinical 3T MRI scanner (Magnetom TIM Trio, Siemens Medical Solutions, Germany) was evaluated by using eight hollow spheres with inner diameters from 3.95 to 7.86 mm placed at different positions inside a homogeneous cylinder phantom with an 9:1 and 6:1 sphere to background ratio. The quantification accuracy for small lesions at different positions in the PET FoV shows a standard deviation of up to 11% and is acceptable for quantitative brain studies where the homogeneity of quantification on the entire FoV is essental. Image quality and resolution of the new Siemens whole-body PET/MR system (Biograph mMR, Siemens Medical Solutions, Germany) was evaluated according to the NEMA NU2 2007 protocol using a body phantom containing six spheres with inner diameter from 10 to 37 mm at sphere to background ratios of 8:1 and 4:1 and the F-18 point sources located at different positions inside the PET FoV, respectively. The evaluation of the whole-body PET/MR system reveals a good PET image quality and resolution comparable to state-of-the-art clinical PET/CT scanners. First images of patient studies carried out at the whole-body PET/MR are presented highlighting the potency of combined PET/MR imaging.

ei

Web [BibTex]

Web [BibTex]


no image
Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(OP314), Annual Congress of the European Association of Nuclear Medicine (EANM), October 2011 (talk)

Abstract
PURPOSE:Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. MRCA are made up of iron oxide and Gd-chelates for oral and intravenous (iv) application, respectively. We assess additional attenuation of the PET emission signals in the presence of oral and iv MRCA.MATERIALS AND METHODS:Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and an integrated whole-body PET/MR (Biograph mMR, Siemens). Two common MRCA were evaluated: Lumirem (oral) and Gadovist (iv).Reference PET attenuation values were determined on a dedicated small-animal PET (Inveon, Siemens) using equivalent standard PET transmission source imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% concentration), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs.The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1.PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction (AC). Since Teflon is not correctly identified on MR, PET(/MR) data were reconstructed using MR-AC and CT-AC.RESULTS:Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347.Lumirem had little effect on PET attenuation with (C3) being 13%, 10% and 11% higher than (C2) on PET/CT, PET/MR with MR-AC, and PET/MR with CT-AC, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower, 1.2% higher, and 3.5% lower than (Sy2) on PET/CT, PET/MR with MR-AC and PET/MR with CT-AC, respectively.CONCLUSION:MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

ei

Web [BibTex]

Web [BibTex]


no image
Multi-parametric Tumor Characterization and Therapy Monitoring using Simultaneous PET/MRI: initial results for Lung Cancer and GvHD

Sauter, A., Schmidt, H., Gueckel, B., Brendle, C., Bezrukov, I., Mantlik, F., Kolb, A., Mueller, M., Reimold, M., Federmann, B., Hetzel, J., Claussen, C., Pfannenberg, C., Horger, M., Pichler, B., Schwenzer, N.

(T110), 2011 World Molecular Imaging Congress (WMIC), September 2011 (talk)

Abstract
Hybrid imaging modalities such as [18F]FDG-PET/CT are superior in staging of e.g. lung cancer disease compared with stand-alone modalities. Clinical PET/MRI systems are about to enter the field of hybrid imaging and offer potential advantages. One added value could be a deeper insight into the tumor metabolism and tumorigenesis due to the combination of PET and dedicated MR methods such as MRS and DWI. Additionally, therapy monitoring of diffucult to diagnose disease such as chronic sclerodermic GvHD (csGvHD) can potentially be improved by this combination. We have applied PET/MRI in 3 patients with lung cancer and 4 patients with csGvHD before and during therapy. All 3 patients had lung cancer confirmed by histology (2 adenocarcinoma, 1 carcinoid). First, a [18F]FDG-PET/CT was performed with the following parameters: injected dose 351.7±25.1 MBq, uptake time 59.0±2.6 min, 3 min/bed. Subsequently, patients were brought to the PET/MRI imaging facility. The whole-body PET/MRI Biograph mMR system comprises 56 detector cassettes with a 59.4 cm transaxial and 25.8 cm axial FoV. The MRI is a modified Verio system with a magnet bore of 60 cm. The following parameters for PET acquisition were applied: uptake time 121.3±2.3 min, 3 bed positions, 6 min/bed. T1w, T2w, and DWI MR images were recorded simultaneously for each bed. Acquired PET data were reconstructed with an iterative 3D OSEM algorithm using 3 iterations and 21 subsets, Gaussian filter of 3 mm. The 4 patients with GvHD were brought to the brainPET/MRI imaging facility 2:10h-2:28h after tracer injection. A 9 min brainPET-acquisition with simultaneous MRI of the lower extremities was accomplished. MRI examination included T1-weighted (pre and post gadolinium) and T2-weighted sequences. Attenuation correction was calculated based on manual bone segmentation and thresholds for soft tissue, fat and air. Soleus muscle (m), crural fascia (f1) and posterior crural intermuscular septum fascia (f2) were surrounded with ROIs based on the pre-treatment T1-weighted images and coregistered using IRW (Siemens). Fascia-to-muscle ratios for PET (f/m), T1 contrast uptake (T1_post-contrast_f-pre-contrast_f/post-contrast_m-pre-contrast_m) and T2 (T2_f/m) were calculated. Both patients with adenocarcinoma show a lower ADC value compared with the carcinoid patient suggesting a higher cellularity. This is also reflected in FDG-PET with higher SUV values. Our initial results reveal that PET/MRI can provide complementary information for a profound tumor characterization and therapy monitoring. The high soft tissue contrast provided by MRI is valuable for the assessment of the fascial inflammation. While in the first patient FDG and contrast uptake as well as edema, represented by T2 signals, decreased with ongoing therapy, all parameters remained comparatively stable in the second patient. Contrary to expectations, an increase in FDG uptake of patient 3 and 4 was accompanied by an increase of the T2 signals, but a decrease in contrast uptake. These initial results suggest that PET/MRI provides complementary information of the complex disease mechanisms in fibrosing disorders.

ei

Web [BibTex]

Web [BibTex]


no image
Statistical Image Analysis and Percolation Theory

Langovoy, M., Habeck, M., Schölkopf, B.

2011 Joint Statistical Meetings (JSM), August 2011 (talk)

Abstract
We develop a novel method for detection of signals and reconstruction of images in the presence of random noise. The method uses results from percolation theory. We specifically address the problem of detection of multiple objects of unknown shapes in the case of nonparametric noise. The noise density is unknown and can be heavy-tailed. The objects of interest have unknown varying intensities. No boundary shape constraints are imposed on the objects, only a set of weak bulk conditions is required. We view the object detection problem as hypothesis testing for discrete statistical inverse problems. We present an algorithm that allows to detect greyscale objects of various shapes in noisy images. We prove results on consistency and algorithmic complexity of our procedures. Applications to cryo-electron microscopy are presented.

ei

Web [BibTex]

Web [BibTex]


no image
Statistical Learning Theory: Models, Concepts, and Results

von Luxburg, U., Schölkopf, B.

In Handbook of the History of Logic, Vol. 10: Inductive Logic, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

Abstract
Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms and is arguably one of the most beautifully developed branches of artificial intelligence in general. It originated in Russia in the 1960s and gained wide popularity in the 1990s following the development of the so-called Support Vector Machine (SVM), which has become a standard tool for pattern recognition in a variety of domains ranging from computer vision to computational biology. Providing the basis of new learning algorithms, however, was not the only motivation for developing statistical learning theory. It was just as much a philosophical one, attempting to answer the question of what it is that allows us to draw valid conclusions from empirical data. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We do not assume that the reader has a deep background in mathematics, statistics, or computer science. Given the nature of the subject matter, however, some familiarity with mathematical concepts and notations and some intuitive understanding of basic probability is required. There exist many excellent references to more technical surveys of the mathematics of statistical learning theory: the monographs by one of the founders of statistical learning theory ([Vapnik, 1995], [Vapnik, 1998]), a brief overview over statistical learning theory in Section 5 of [Sch{\"o}lkopf and Smola, 2002], more technical overview papers such as [Bousquet et al., 2003], [Mendelson, 2003], [Boucheron et al., 2005], [Herbrich and Williamson, 2002], and the monograph [Devroye et al., 1996].

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Cooperative Cuts

Jegelka, S.

COSA Workshop: Combinatorial Optimization, Statistics, and Applications, March 2011 (talk)

Abstract
Combinatorial problems with submodular cost functions have recently drawn interest. In a standard combinatorial problem, the sum-of-weights cost is replaced by a submodular set function. The result is a powerful model that is though very hard. In this talk, I will introduce cooperative cuts, minimum cuts with submodular edge weights. I will outline methods to approximately solve this problem, and show an application in computer vision. If time permits, the talk will also sketch regret-minimizing online algorithms for submodular-cost combinatorial problems. This is joint work with Jeff Bilmes (University of Washington).

ei

Web [BibTex]

Web [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI

Ihme, K., Zander, TO.

In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
When using eye movements for cursor control in human-computer interaction (HCI), it may be difficult to find an appropriate substitute for the click operation. Most approaches make use of dwell times. However, in this context the so-called Midas-Touch-Problem occurs which means that the system wrongly interprets fixations due to long processing times or spontaneous dwellings of the user as command. Lately it has been shown that brain-computer interface (BCI) input bears good prospects to overcome this problem using imagined hand movements to elicit a selection. The current approach tries to develop this idea further by exploring potential signals for the use in a passive BCI, which would have the advantage that the brain signals used as input are generated automatically without conscious effort of the user. To explore event-related potentials (ERPs) giving information about the user’s intention to select an object, 32-channel electroencephalography (EEG) was recorded from ten participants interacting with a dwell-time-based system. Comparing ERP signals during the dwell time with those occurring during fixations on a neutral cross hair, a sustained negative slow cortical potential at central electrode sites was revealed. This negativity might be a contingent negative variation (CNV) reflecting the participants’ anticipation of the upcoming selection. Offline classification suggests that the CNV is detectable in single trial (mean accuracy 74.9 %). In future, research on the CNV should be accomplished to ensure its stable occurence in human-computer interaction and render possible its use as a potential substitue for the click operation.

ei

DOI [BibTex]

DOI [BibTex]


no image
Kernel Methods in Bioinformatics

Borgwardt, KM.

In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
Kernel methods have now witnessed more than a decade of increasing popularity in the bioinformatics community. In this article, we will compactly review this development, examining the areas in which kernel methods have contributed to computational biology and describing the reasons for their success.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Cue Combination: Beyond Optimality

Rosas, P., Wichmann, F.

In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

ei

[BibTex]

[BibTex]