Header logo is


2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

2015 (misc)

mms

link (url) [BibTex]

2013


Thumb xl implied flow whue
Puppet Flow

Zuffi, S., Black, M. J.

(7), Max Planck Institute for Intelligent Systems, October 2013 (techreport)

Abstract
We introduce Puppet Flow (PF), a layered model describing the optical flow of a person in a video sequence. We consider video frames composed by two layers: a foreground layer corresponding to a person, and background. We model the background as an affine flow field. The foreground layer, being a moving person, requires reasoning about the articulated nature of the human body. We thus represent the foreground layer with the Deformable Structures model (DS), a parametrized 2D part-based human body representation. We call the motion field defined through articulated motion and deformation of the DS model, a Puppet Flow. By exploiting the DS representation, Puppet Flow is a parametrized optical flow field, where parameters are the person's pose, gender and body shape.

ps

pdf Project Page Project Page [BibTex]

2013


pdf Project Page Project Page [BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,651 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,683 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent 8,524,092 (misc)

pi

[BibTex]

[BibTex]


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

ei

Web [BibTex]

Web [BibTex]


Thumb xl submodularity nips
Learning and Optimization with Submodular Functions

Sankaran, B., Ghazvininejad, M., He, X., Kale, D., Cohen, L.

ArXiv, May 2013 (techreport)

Abstract
In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.

am

arxiv link (url) [BibTex]

arxiv link (url) [BibTex]


no image
Dry adhesives and methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2013, US Patent App. 13/845,702 (misc)

pi

[BibTex]

[BibTex]


Thumb xl secretstr
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them

Sun, D., Roth, S., Black, M. J.

(CS-10-03), Brown University, Department of Computer Science, January 2013 (techreport)

ps

pdf [BibTex]

pdf [BibTex]


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K.

30th International Conference on Machine Learning (ICML2013), 2013 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.

arXiv:1309.0654, 2013 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]

2011


no image
Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(SST15-05 ), 97th Scientific Assemble and Annual Meeting of the Radiological Society of North America (RSNA), December 2011 (talk)

Abstract
PURPOSE Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. We assess additional attenuation of the PET emission signals in the presence of oral and intraveneous (iv) MRCA made up of iron oxide and Gd-chelates, respectively. METHOD AND MATERIALS Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and integrated whole-body PET/MR (Biograph mMR, Siemens) using oral (Lumirem) and intraveneous (Gadovist) MRCA. Reference PET attenuation values were determined on a small-animal PET (Inveon, Siemens) using standard PET transmission imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% conc.), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs. The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1. PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction. RESULTS Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347. Lumirem had little effect on PET attenuation with (C3) being 13% and 10% higher than (C2) on PET/CT and PET/MR, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower than (Sy2) on PET/CT and 1.2% higher than (Sy2) on PET/MR. CONCLUSION MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

ei

Web [BibTex]

2011


Web [BibTex]


no image
Cooperative Cuts: a new use of submodularity in image segmentation

Jegelka, S.

Second I.S.T. Austria Symposium on Computer Vision and Machine Learning, October 2011 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Effect of MR Contrast Agents on Quantitative Accuracy of PET in Combined Whole-Body PET/MR Imaging

Lois, C., Bezrukov, I., Schmidt, H., Schwenzer, N., Werner, M., Pichler, B., Kupferschläger, J., Beyer, T.

2011(MIC3-3), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
Combined whole-body PET/MR systems are being tested in clinical practice today. Integrated imaging protocols entail the use of MR contrast agents (MRCA) that could bias PET attenuation correction. In this work, we assess the effect of MRCA in PET/MR imaging. We analyze the effect of oral and intravenous MRCA on PET activity after attenuation correction. We conclude that in clinical scenarios, MRCA are not expected to lead to significant attenuation of PET signals, and that attenuation maps are not biased after the ingestion of adequate oral contrasts.

ei

Web [BibTex]

Web [BibTex]


no image
First Results on Patients and Phantoms of a Fully Integrated Clinical Whole-Body PET/MRI

Schmidt, H., Schwenzer, N., Bezrukov, I., Kolb, A., Mantlik, F., Kupferschläger, J., Lois, C., Sauter, A., Brendle, C., Pfannenberg, C., Pichler, B.

2011(J2-8), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
First clinical fully integrated whole-body PET/MR scanners are just entering the field. Here, we present studies toward quantification accuracy and variation within the PET field of view of small lesions from our BrainPET/MRI, a dedicated clinical brain scanner which was installed three years ago in Tbingen. Also, we present first results for patient and phantom scans of a fully integral whole-body PET/MRI, which was installed two months ago at our department. The quantification accuracy and homogeneity of the BrainPET-Insert (Siemens Medical Solutions, Germany) installed inside the magnet bore of a clinical 3T MRI scanner (Magnetom TIM Trio, Siemens Medical Solutions, Germany) was evaluated by using eight hollow spheres with inner diameters from 3.95 to 7.86 mm placed at different positions inside a homogeneous cylinder phantom with an 9:1 and 6:1 sphere to background ratio. The quantification accuracy for small lesions at different positions in the PET FoV shows a standard deviation of up to 11% and is acceptable for quantitative brain studies where the homogeneity of quantification on the entire FoV is essental. Image quality and resolution of the new Siemens whole-body PET/MR system (Biograph mMR, Siemens Medical Solutions, Germany) was evaluated according to the NEMA NU2 2007 protocol using a body phantom containing six spheres with inner diameter from 10 to 37 mm at sphere to background ratios of 8:1 and 4:1 and the F-18 point sources located at different positions inside the PET FoV, respectively. The evaluation of the whole-body PET/MR system reveals a good PET image quality and resolution comparable to state-of-the-art clinical PET/CT scanners. First images of patient studies carried out at the whole-body PET/MR are presented highlighting the potency of combined PET/MR imaging.

ei

Web [BibTex]

Web [BibTex]


no image
Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(OP314), Annual Congress of the European Association of Nuclear Medicine (EANM), October 2011 (talk)

Abstract
PURPOSE:Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. MRCA are made up of iron oxide and Gd-chelates for oral and intravenous (iv) application, respectively. We assess additional attenuation of the PET emission signals in the presence of oral and iv MRCA.MATERIALS AND METHODS:Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and an integrated whole-body PET/MR (Biograph mMR, Siemens). Two common MRCA were evaluated: Lumirem (oral) and Gadovist (iv).Reference PET attenuation values were determined on a dedicated small-animal PET (Inveon, Siemens) using equivalent standard PET transmission source imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% concentration), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs.The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1.PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction (AC). Since Teflon is not correctly identified on MR, PET(/MR) data were reconstructed using MR-AC and CT-AC.RESULTS:Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347.Lumirem had little effect on PET attenuation with (C3) being 13%, 10% and 11% higher than (C2) on PET/CT, PET/MR with MR-AC, and PET/MR with CT-AC, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower, 1.2% higher, and 3.5% lower than (Sy2) on PET/CT, PET/MR with MR-AC and PET/MR with CT-AC, respectively.CONCLUSION:MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

ei

Web [BibTex]

Web [BibTex]


no image
Multi-parametric Tumor Characterization and Therapy Monitoring using Simultaneous PET/MRI: initial results for Lung Cancer and GvHD

Sauter, A., Schmidt, H., Gueckel, B., Brendle, C., Bezrukov, I., Mantlik, F., Kolb, A., Mueller, M., Reimold, M., Federmann, B., Hetzel, J., Claussen, C., Pfannenberg, C., Horger, M., Pichler, B., Schwenzer, N.

(T110), 2011 World Molecular Imaging Congress (WMIC), September 2011 (talk)

Abstract
Hybrid imaging modalities such as [18F]FDG-PET/CT are superior in staging of e.g. lung cancer disease compared with stand-alone modalities. Clinical PET/MRI systems are about to enter the field of hybrid imaging and offer potential advantages. One added value could be a deeper insight into the tumor metabolism and tumorigenesis due to the combination of PET and dedicated MR methods such as MRS and DWI. Additionally, therapy monitoring of diffucult to diagnose disease such as chronic sclerodermic GvHD (csGvHD) can potentially be improved by this combination. We have applied PET/MRI in 3 patients with lung cancer and 4 patients with csGvHD before and during therapy. All 3 patients had lung cancer confirmed by histology (2 adenocarcinoma, 1 carcinoid). First, a [18F]FDG-PET/CT was performed with the following parameters: injected dose 351.7±25.1 MBq, uptake time 59.0±2.6 min, 3 min/bed. Subsequently, patients were brought to the PET/MRI imaging facility. The whole-body PET/MRI Biograph mMR system comprises 56 detector cassettes with a 59.4 cm transaxial and 25.8 cm axial FoV. The MRI is a modified Verio system with a magnet bore of 60 cm. The following parameters for PET acquisition were applied: uptake time 121.3±2.3 min, 3 bed positions, 6 min/bed. T1w, T2w, and DWI MR images were recorded simultaneously for each bed. Acquired PET data were reconstructed with an iterative 3D OSEM algorithm using 3 iterations and 21 subsets, Gaussian filter of 3 mm. The 4 patients with GvHD were brought to the brainPET/MRI imaging facility 2:10h-2:28h after tracer injection. A 9 min brainPET-acquisition with simultaneous MRI of the lower extremities was accomplished. MRI examination included T1-weighted (pre and post gadolinium) and T2-weighted sequences. Attenuation correction was calculated based on manual bone segmentation and thresholds for soft tissue, fat and air. Soleus muscle (m), crural fascia (f1) and posterior crural intermuscular septum fascia (f2) were surrounded with ROIs based on the pre-treatment T1-weighted images and coregistered using IRW (Siemens). Fascia-to-muscle ratios for PET (f/m), T1 contrast uptake (T1_post-contrast_f-pre-contrast_f/post-contrast_m-pre-contrast_m) and T2 (T2_f/m) were calculated. Both patients with adenocarcinoma show a lower ADC value compared with the carcinoid patient suggesting a higher cellularity. This is also reflected in FDG-PET with higher SUV values. Our initial results reveal that PET/MRI can provide complementary information for a profound tumor characterization and therapy monitoring. The high soft tissue contrast provided by MRI is valuable for the assessment of the fascial inflammation. While in the first patient FDG and contrast uptake as well as edema, represented by T2 signals, decreased with ongoing therapy, all parameters remained comparatively stable in the second patient. Contrary to expectations, an increase in FDG uptake of patient 3 and 4 was accompanied by an increase of the T2 signals, but a decrease in contrast uptake. These initial results suggest that PET/MRI provides complementary information of the complex disease mechanisms in fibrosing disorders.

ei

Web [BibTex]

Web [BibTex]


no image
Statistical Image Analysis and Percolation Theory

Langovoy, M., Habeck, M., Schölkopf, B.

2011 Joint Statistical Meetings (JSM), August 2011 (talk)

Abstract
We develop a novel method for detection of signals and reconstruction of images in the presence of random noise. The method uses results from percolation theory. We specifically address the problem of detection of multiple objects of unknown shapes in the case of nonparametric noise. The noise density is unknown and can be heavy-tailed. The objects of interest have unknown varying intensities. No boundary shape constraints are imposed on the objects, only a set of weak bulk conditions is required. We view the object detection problem as hypothesis testing for discrete statistical inverse problems. We present an algorithm that allows to detect greyscale objects of various shapes in noisy images. We prove results on consistency and algorithmic complexity of our procedures. Applications to cryo-electron microscopy are presented.

ei

Web [BibTex]

Web [BibTex]


no image
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

Abstract
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

ei

PDF [BibTex]

PDF [BibTex]


no image
Cooperative Cuts

Jegelka, S.

COSA Workshop: Combinatorial Optimization, Statistics, and Applications, March 2011 (talk)

Abstract
Combinatorial problems with submodular cost functions have recently drawn interest. In a standard combinatorial problem, the sum-of-weights cost is replaced by a submodular set function. The result is a powerful model that is though very hard. In this talk, I will introduce cooperative cuts, minimum cuts with submodular edge weights. I will outline methods to approximately solve this problem, and show an application in computer vision. If time permits, the talk will also sketch regret-minimizing online algorithms for submodular-cost combinatorial problems. This is joint work with Jeff Bilmes (University of Washington).

ei

Web [BibTex]

Web [BibTex]


no image
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

Nickisch, H., Seeger, M.

Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

Abstract
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.

ei

Web [BibTex]

Web [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

ei

PDF [BibTex]

PDF [BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

ei

PDF [BibTex]

PDF [BibTex]

2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

ei

Web [BibTex]

2008


Web [BibTex]


no image
Logistic Regression for Graph Classification

Shervashidze, N., Tsuda, K.

NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

Abstract
In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression for graphs, which is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics.

ei

Web [BibTex]

Web [BibTex]


no image
New Projected Quasi-Newton Methods with Applications

Sra, S.

Microsoft Research Tech-talk, December 2008 (talk)

Abstract
Box-constrained convex optimization problems are central to several applications in a variety of fields such as statistics, psychometrics, signal processing, medical imaging, and machine learning. Two fundamental examples are the non-negative least squares (NNLS) problem and the non-negative Kullback-Leibler (NNKL) divergence minimization problem. The non-negativity constraints are usually based on an underlying physical restriction, for e.g., when dealing with applications in astronomy, tomography, statistical estimation, or image restoration, the underlying parameters represent physical quantities such as concentration, weight, intensity, or frequency counts and are therefore only interpretable with non-negative values. Several modern optimization methods can be inefficient for simple problems such as NNLS and NNKL as they are really designed to handle far more general and complex problems. In this work we develop two simple quasi-Newton methods for solving box-constrained (differentiable) convex optimization problems that utilize the well-known BFGS and limited memory BFGS updates. We position our method between projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982) methods, and prove its convergence under a simple Armijo step-size rule. We illustrate our method by showing applications to: Image deblurring, Positron Emission Tomography (PET) image reconstruction, and Non-negative Matrix Approximation (NMA). On medium sized data we observe performance competitive to established procedures, while for larger data the results are even better.

ei

PDF [BibTex]

PDF [BibTex]


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

(180), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric epsilon-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric epsilon-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is larger than for non-geometric graph mining, the total time is within a reasonable level even for small minimum support.

ei

PDF [BibTex]

PDF [BibTex]


no image
Simultaneous Implicit Surface Reconstruction and Meshing

Giesen, J., Maier, M., Schölkopf, B.

(179), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
We investigate an implicit method to compute a piecewise linear representation of a surface from a set of sample points. As implicit surface functions we use the weighted sum of piecewise linear kernel functions. For such a function we can partition Rd in such a way that these functions are linear on the subsets of the partition. For each subset in the partition we can then compute the zero level set of the function exactly as the intersection of a hyperplane with the subset.

ei

PDF [BibTex]

PDF [BibTex]


no image
Taxonomy Inference Using Kernel Dependence Measures

Blaschko, M., Gretton, A.

(181), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
We introduce a family of unsupervised algorithms, numerical taxonomy clustering, to simultaneously cluster data, and to learn a taxonomy that encodes the relationship between the clusters. The algorithms work by maximizing the dependence between the taxonomy and the original data. The resulting taxonomy is a more informative visualization of complex data than simple clustering; in addition, taking into account the relations between different clusters is shown to substantially improve the quality of the clustering, when compared with state-of-the-art algorithms in the literature (both spectral clustering and a previous dependence maximization approach). We demonstrate our algorithm on image and text data.

ei

PDF [BibTex]

PDF [BibTex]


no image
MR-Based PET Attenuation Correction: Initial Results for Whole Body

Hofmann, M., Steinke, F., Aschoff, P., Lichy, M., Brady, M., Schölkopf, B., Pichler, B.

Medical Imaging Conference, October 2008 (talk)

ei

[BibTex]

[BibTex]


no image
Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches

Gretton, A., Györfi, L.

19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models

Seeger, M., Nickisch, H.

(175), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2008 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Block-Iterative Algorithms for Non-Negative Matrix Approximation

Sra, S.

(176), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2008 (techreport)

Abstract
In this report we present new algorithms for non-negative matrix approximation (NMA), commonly known as the NMF problem. Our methods improve upon the well-known methods of Lee & Seung [19] for both the Frobenius norm as well the Kullback-Leibler divergence versions of the problem. For the latter problem, our results are especially interesting because it seems to have witnessed much lesser algorithmic progress as compared to the Frobenius norm NMA problem. Our algorithms are based on a particular block-iterative acceleration technique for EM, which preserves the multiplicative nature of the updates and also ensures monotonicity. Furthermore, our algorithms also naturally apply to the Bregman-divergence NMA algorithms of Dhillon and Sra [8]. Experimentally, we show that our algorithms outperform the traditional Lee/Seung approach most of the time.

ei

PDF [BibTex]

PDF [BibTex]


no image
Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering

Sra, S., Jegelka, S., Banerjee, A.

(177), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2008 (techreport)

Abstract
The Euclidean K-means problem is fundamental to clustering and over the years it has been intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10], and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational difficulty encountered by these clustering problems is the NP-Hardness of the associated optimization task, and commonly used methods guarantee at most local optimality. Consequently, approximation algorithms of varying degrees of sophistication have been developed, though largely for the basic Euclidean K-means (or `1-norm K-median) problem. In this paper we present approximation algorithms for several Bregman clustering problems by building upon the recent paper of Arthur and Vassilvitskii [5]. Our algorithms obtain objective values within a factor O(logK) for Bregman k-means, Bregman co-clustering, Bregman tensor clustering, and weighted kernel k-means. To our knowledge, except for some special cases, approximation algorithms have not been considered for these general clustering problems. There are several important implications of our work: (i) under the same assumptions as Ackermann et al. [1] it yields a much faster algorithm (non-exponential in K, unlike [1]) for information-theoretic clustering, (ii) it answers several open problems posed by [4], including generalizations to Bregman co-clustering, and tensor clustering, (iii) it provides practical and easy to implement methods—in contrast to several other common approximation approaches.

ei

PDF [BibTex]

PDF [BibTex]


no image
Combining Appearance and Motion for Human Action Classification in Videos

Dhillon, P., Nowozin, S., Lampert, C.

(174), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, August 2008 (techreport)

Abstract
We study the question of activity classification in videos and present a novel approach for recognizing human action categories in videos by combining information from appearance and motion of human body parts. Our approach uses a tracking step which involves Particle Filtering and a local non - parametric clustering step. The motion information is provided by the trajectory of the cluster modes of a local set of particles. The statistical information about the particles of that cluster over a number of frames provides the appearance information. Later we use a “Bag ofWords” model to build one histogram per video sequence from the set of these robust appearance and motion descriptors. These histograms provide us characteristic information which helps us to discriminate among various human actions and thus classify them correctly. We tested our approach on the standard KTH and Weizmann human action datasets and the results were comparable to the state of the art. Additionally our approach is able to distinguish between activities that involve the motion of complete body from those in which only certain body parts move. In other words, our method discriminates well between activities with “gross motion” like running, jogging etc. and “local motion” like waving, boxing etc.

ei

PDF [BibTex]

PDF [BibTex]


no image
Example-based Learning for Single-image Super-resolution and JPEG Artifact Removal

Kim, K., Kwon, Y.

(173), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, August 2008 (techreport)

Abstract
This paper proposes a framework for single-image super-resolution and JPEG artifact removal. The underlying idea is to learn a map from input low-quality images (suitably preprocessed low-resolution or JPEG encoded images) to target high-quality images based on example pairs of input and output images. To retain the complexity of the resulting learning problem at a moderate level, a patch-based approach is taken such that kernel ridge regression (KRR) scans the input image with a small window (patch) and produces a patchvalued output for each output pixel location. These constitute a set of candidate images each of which reflects different local information. An image output is then obtained as a convex combination of candidates for each pixel based on estimated confidences of candidates. To reduce the time complexity of training and testing for KRR, a sparse solution is found by combining the ideas of kernel matching pursuit and gradient descent. As a regularized solution, KRR leads to a better generalization than simply storing the examples as it has been done in existing example-based super-resolution algorithms and results in much less noisy images. However, this may introduce blurring and ringing artifacts around major edges as sharp changes are penalized severely. A prior model of a generic image class which takes into account the discontinuity property of images is adopted to resolve this problem. Comparison with existing super-resolution and JPEG artifact removal methods shows the effectiveness of the proposed method. Furthermore, the proposed method is generic in that it has the potential to be applied to many other image enhancement applications.

ei

PDF [BibTex]

PDF [BibTex]


no image
mGene: A Novel Discriminative Gene Finder

Schweikert, G., Zeller, G., Zien, A., Behr, J., Sonnenburg, S., Philips, P., Ong, C., Rätsch, G.

Worm Genomics and Systems Biology meeting, July 2008 (talk)

ei

[BibTex]

[BibTex]