Header logo is


2003


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

PDF Web [BibTex]

2003


PDF Web [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

Abstract
The Google search engine has had a huge success with its PageRank web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the World Wide Web using random walk. This algorithm can only be used for graph data, however. Here we propose a simple universal ranking algorithm for vectorial data, based on the exploration of the intrinsic global geometric structure revealed by a huge amount of data. Experimental results from image and text to bioinformatics illustrates the validity of our algorithm.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

Kim, K., Franz, M., Schölkopf, B.

(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)

Abstract
A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method, a convergence proof, and preliminary applications in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning of kernel principal components.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)

Abstract
We consider the learning problem in the transductive setting. Given a set of points of which only some are labeled, the goal is to predict the label of the unlabeled points. A principled clue to solve such a learning problem is the consistency assumption that a classifying function should be sufficiently smooth with respect to the structure revealed by these known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

[BibTex]

[BibTex]


no image
Implicit Wiener Series

Franz, M., Schölkopf, B.

(114), Max Planck Institute for Biological Cybernetics, June 2003 (techreport)

Abstract
The Wiener series is one of the standard methods to systematically characterize the nonlinearity of a neural system. The classical estimation method of the expansion coefficients via cross-correlation suffers from severe problems that prevent its application to high-dimensional and strongly nonlinear systems. We propose a new estimation method based on regression in a reproducing kernel Hilbert space that overcomes these problems. Numerical experiments show performance advantages in terms of convergence, interpretability and system size that can be handled.

ei

PDF [BibTex]

PDF [BibTex]


no image
Machine Learning approaches to protein ranking: discriminative, semi-supervised, scalable algorithms

Weston, J., Leslie, C., Elisseeff, A., Noble, W.

(111), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2003 (techreport)

Abstract
A key tool in protein function discovery is the ability to rank databases of proteins given a query amino acid sequence. The most successful method so far is a web-based tool called PSI-BLAST which uses heuristic alignment of a profile built using the large unlabeled database. It has been shown that such use of global information via an unlabeled data improves over a local measure derived from a basic pairwise alignment such as performed by PSI-BLAST's predecessor, BLAST. In this article we look at ways of leveraging techniques from the field of machine learning for the problem of ranking. We show how clustering and semi-supervised learning techniques, which aim to capture global structure in data, can significantly improve over PSI-BLAST.

ei

PDF [BibTex]

PDF [BibTex]


no image
The Geometry Of Kernel Canonical Correlation Analysis

Kuss, M., Graepel, T.

(108), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2003 (techreport)

Abstract
Canonical correlation analysis (CCA) is a classical multivariate method concerned with describing linear dependencies between sets of variables. After a short exposition of the linear sample CCA problem and its analytical solution, the article proceeds with a detailed characterization of its geometry. Projection operators are used to illustrate the relations between canonical vectors and variates. The article then addresses the problem of CCA between spaces spanned by objects mapped into kernel feature spaces. An exact solution for this kernel canonical correlation (KCCA) problem is derived from a geometric point of view. It shows that the expansion coefficients of the canonical vectors in their respective feature space can be found by linear CCA in the basis induced by kernel principal component analysis. The effect of mappings into higher dimensional feature spaces is considered critically since it simplifies the CCA problem in general. Then two regularized variants of KCCA are discussed. Relations to other methods are illustrated, e.g., multicategory kernel Fisher discriminant analysis, kernel principal component regression and possible applications thereof in blind source separation.

ei

PDF [BibTex]

PDF [BibTex]


no image
The Kernel Mutual Information

Gretton, A., Herbrich, R., Smola, A.

Max Planck Institute for Biological Cybernetics, April 2003 (techreport)

Abstract
We introduce two new functions, the kernel covariance (KC) and the kernel mutual information (KMI), to measure the degree of independence of several continuous random variables. The former is guaranteed to be zero if and only if the random variables are pairwise independent; the latter shares this property, and is in addition an approximate upper bound on the mutual information, as measured near independence, and is based on a kernel density estimate. We show that Bach and Jordan‘s kernel generalised variance (KGV) is also an upper bound on the same kernel density estimate, but is looser. Finally, we suggest that the addition of a regularising term in the KGV causes it to approach the KMI, which motivates the introduction of this regularisation. The performance of the KC and KMI is verified in the context of instantaneous independent component analysis (ICA), by recovering both artificial and real (musical) signals following linear mixing.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Rademacher and Gaussian averages in Learning Theory

Bousquet, O.

Universite de Marne-la-Vallee, March 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Introduction: Robots with Cognition?

Franz, MO.

6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

Abstract
Using robots as models of cognitive behaviour has a long tradition in robotics. Parallel to the historical development in cognitive science, one observes two major, subsequent waves in cognitive robotics. The first is based on ideas of classical, cognitivist Artificial Intelligence (AI). According to the AI view of cognition as rule-based symbol manipulation, these robots typically try to extract symbolic descriptions of the environment from their sensors that are used to update a common, global world representation from which, in turn, the next action of the robot is derived. The AI approach has been successful in strongly restricted and controlled environments requiring well-defined tasks, e.g. in industrial assembly lines. AI-based robots mostly failed, however, in the unpredictable and unstructured environments that have to be faced by mobile robots. This has provoked the second wave in cognitive robotics which tries to achieve cognitive behaviour as an emergent property from the interaction of simple, low-level modules. Robots of the second wave are called animats as their architecture is designed to closely model aspects of real animals. Using only simple reactive mechanisms and Hebbian-type or evolutionary learning, the resulting animats often outperformed the highly complex AI-based robots in tasks such as obstacle avoidance, corridor following etc. While successful in generating robust, insect-like behaviour, typical animats are limited to stereotyped, fixed stimulus-response associations. If one adopts the view that cognition requires a flexible, goal-dependent choice of behaviours and planning capabilities (H.A. Mallot, Kognitionswissenschaft, 1999, 40-48) then it appears that cognitive behaviour cannot emerge from a collection of purely reactive modules. It rather requires environmentally decoupled structures that work without directly engaging the actions that it is concerned with. This poses the current challenge to cognitive robotics: How can we build cognitive robots that show the robustness and the learning capabilities of animats without falling back into the representational paradigm of AI? The speakers of the symposium present their approaches to this question in the context of robot navigation and sensorimotor learning. In the first talk, Prof. Helge Ritter introduces a robot system for imitation learning capable of exploring various alternatives in simulation before actually performing a task. The second speaker, Angelo Arleo, develops a model of spatial memory in rat navigation based on his electrophysiological experiments. He validates the model on a mobile robot which, in some navigation tasks, shows a performance comparable to that of the real rat. A similar model of spatial memory is used to investigate the mechanisms of territory formation in a series of robot experiments presented by Prof. Hanspeter Mallot. In the last talk, we return to the domain of sensorimotor learning where Ralf M{\"o}ller introduces his approach to generate anticipatory behaviour by learning forward models of sensorimotor relationships.

ei

Web [BibTex]

Web [BibTex]


no image
A Note on Parameter Tuning for On-Line Shifting Algorithms

Bousquet, O.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)

Abstract
In this short note, building on ideas of M. Herbster [2] we propose a method for automatically tuning the parameter of the FIXED-SHARE algorithm proposed by Herbster and Warmuth [3] in the context of on-line learning with shifting experts. We show that this can be done with a memory requirement of $O(nT)$ and that the additional loss incurred by the tuning is the same as the loss incurred for estimating the parameter of a Bernoulli random variable.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Interactive Images

Toyama, K., Schölkopf, B.

(MSR-TR-2003-64), Microsoft Research, Cambridge, UK, 2003 (techreport)

Abstract
Interactive Images are a natural extension of three recent developments: digital photography, interactive web pages, and browsable video. An interactive image is a multi-dimensional image, displayed two dimensions at a time (like a standard digital image), but with which a user can interact to browse through the other dimensions. One might consider a standard video sequence viewed with a video player as a simple interactive image with time as the third dimension. Interactive images are a generalization of this idea, in which the third (and greater) dimensions may be focus, exposure, white balance, saturation, and other parameters. Interaction is handled via a variety of modes including those we call ordinal, pixel-indexed, cumulative, and comprehensive. Through exploration of three novel forms of interactive images based on color, exposure, and focus, we will demonstrate the compelling nature of interactive images.

ei

Web [BibTex]

Web [BibTex]