Header logo is


2019


Thumb xl blockdiag
Event-triggered Learning

Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

ics

arXiv PDF [BibTex]

2019


2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

Web [BibTex]

2009


Web [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Consistent Nonparametric Tests of Independence

Gretton, A., Györfi, L.

(172), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2009 (techreport)

Abstract
Three simple and explicit procedures for testing the independence of two multi-dimensional random variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when the empirical distribution of the variables is restricted to finite partitions. A third test statistic is defined as a kernel-based independence measure. Two kinds of tests are provided. Distribution-free strong consistent tests are derived on the basis of large deviation bounds on the test statistcs: these tests make almost surely no Type I or Type II error after a random sample size. Asymptotically alpha-level tests are obtained from the limiting distribution of the test statistics. For the latter tests, the Type I error converges to a fixed non-zero value alpha, and the Type II error drops to zero, for increasing sample size. All tests reject the null hypothesis of independence if the test statistics become large. The performance of the tests is evaluated experimentally on benchmark data.

ei

PDF [BibTex]

PDF [BibTex]


no image
Semi-supervised subspace analysis of human functional magnetic resonance imaging data

Shelton, J., Blaschko, M., Bartels, A.

(185), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2009 (techreport)

Abstract
Kernel Canonical Correlation Analysis is a very general technique for subspace learning that incorporates PCA and LDA as special cases. Functional magnetic resonance imaging (fMRI) acquired data is naturally amenable to these techniques as data are well aligned. fMRI data of the human brain is a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single- and multi-variate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of KCCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

ei

PDF [BibTex]

PDF [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)Ñindeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsÑthe heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

am

link (url) [BibTex]

link (url) [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)â??indeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsâ??the heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Biologically Inspired Polymer Microfibrillar Arrays for Mask Sealing

Cheung, E., Aksak, B., Sitti, M.

CARNEGIE-MELLON UNIV PITTSBURGH PA, 2009 (techreport)

pi

[BibTex]

[BibTex]

2007


no image
Learning with Transformation Invariant Kernels

Walder, C., Chapelle, O.

(165), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2007 (techreport)

Abstract
Abstract. This paper considers kernels invariant to translation, rotation and dilation. We show that no non-trivial positive definite (p.d.) kernels exist which are radial and dilation invariant, only conditionally positive definite (c.p.d.) ones. Accordingly, we discuss the c.p.d. case and provide some novel analysis, including an elementary derivation of a c.p.d. representer theorem. On the practical side, we give a support vector machine (s.v.m.) algorithm for arbitrary c.p.d. kernels. For the thin-plate kernel this leads to a classifier with only one parameter (the amount of regularisation), which we demonstrate to be as effective as an s.v.m. with the Gaussian kernel, even though the Gaussian involves a second parameter (the length scale).

ei

PDF [BibTex]

2007


PDF [BibTex]


no image
Scalable Semidefinite Programming using Convex Perturbations

Kulis, B., Sra, S., Jegelka, S.

(TR-07-47), University of Texas, Austin, TX, USA, September 2007 (techreport)

Abstract
Several important machine learning problems can be modeled and solved via semidefinite programs. Often, researchers invoke off-the-shelf software for the associated optimization, which can be inappropriate for many applications due to computational and storage requirements. In this paper, we introduce the use of convex perturbations for semidefinite programs (SDPs). Using a particular perturbation function, we arrive at an algorithm for SDPs that has several advantages over existing techniques: a) it is simple, requiring only a few lines of MATLAB, b) it is a first-order method which makes it scalable, c) it can easily exploit the structure of a particular SDP to gain efficiency (e.g., when the constraint matrices are low-rank). We demonstrate on several machine learning applications that the proposed algorithm is effective in finding fast approximations to large-scale SDPs.

ei

PDF [BibTex]

PDF [BibTex]


no image
Sparse Multiscale Gaussian Process Regression

Walder, C., Kim, K., Schölkopf, B.

(162), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Most existing sparse Gaussian process (g.p.) models seek computational advantages by basing their computations on a set of m basis functions that are the covariance function of the g.p. with one of its two inputs fixed. We generalise this for the case of Gaussian covariance function, by basing our computations on m Gaussian basis functions with arbitrary diagonal covariance matrices (or length scales). For a fixed number of basis functions and any given criteria, this additional flexibility permits approximations no worse and typically better than was previously possible. Although we focus on g.p. regression, the central idea is applicable to all kernel based algorithms, such as the support vector machine. We perform gradient based optimisation of the marginal likelihood, which costs O(m2n) time where n is the number of data points, and compare the method to various other sparse g.p. methods. Our approach outperforms the other methods, particularly for the case of very few basis functions, i.e. a very high sparsity ratio.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Subwindow Search for Object Localization

Blaschko, M., Hofmann, T., Lampert, C.

(164), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Recent years have seen huge advances in object recognition from images. Recognition rates beyond 95% are the rule rather than the exception on many datasets. However, most state-of-the-art methods can only decide if an object is present or not. They are not able to provide information on the object location or extent within in the image. We report on a simple yet powerful scheme that extends many existing recognition methods to also perform localization of object bounding boxes. This is achieved by maximizing the classification score over all possible subrectangles in the image. Despite the impression that this would be computationally intractable, we show that in many situations efficient algorithms exist which solve a generalized maximum subrectangle problem. We show how our method is applicable to a variety object detection frameworks and demonstrate its performance by applying it to the popular bag of visual words model, achieving competitive results on the PASCAL VOC 2006 dataset.

ei

PDF [BibTex]

PDF [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

(163), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, May 2007 (techreport)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

ei

PDF [BibTex]

PDF [BibTex]


no image
Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

Chiappa, S., Barber, D.

(161), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, March 2007 (techreport)

Abstract
We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based on Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models in order to (semi) automatically determine an appropriate number of components in the mixture, and to additionally bias the components to a parsimonious parameterization. The resulting models are formally intractable and to deal with this we describe a deterministic approximation based on a novel implementation of Variational Bayes.

ei

PDF [BibTex]

PDF [BibTex]


no image
Automatic 3D Face Reconstruction from Single Images or Video

Breuer, P., Kim, K., Kienzle, W., Blanz, V., Schölkopf, B.

(160), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2007 (techreport)

Abstract
This paper presents a fully automated algorithm for reconstructing a textured 3D model of a face from a single photograph or a raw video stream. The algorithm is based on a combination of Support Vector Machines (SVMs) and a Morphable Model of 3D faces. After SVM face detection, individual facial features are detected using a novel regression-and classification-based approach, and probabilistically plausible configurations of features are selected to produce a list of candidates for several facial feature positions. In the next step, the configurations of feature points are evaluated using a novel criterion that is based on a Morphable Model and a combination of linear projections. Finally, the feature points initialize a model-fitting procedure of the Morphable Model. The result is a high-resolution 3D surface model.

ei

PDF [BibTex]

PDF [BibTex]


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

am ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Learning an Outlier-Robust Kalman Filter

Ting, J., Theodorou, E., Schaal, S.

CLMC Technical Report: TR-CLMC-2007-1, Los Angeles, CA, 2007, clmc (techreport)

Abstract
We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step?s state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.

am

PDF [BibTex]

PDF [BibTex]

2001


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

ei

Web [BibTex]

2001


Web [BibTex]