Header logo is


2023


no image
Efficient Sampling from Differentiable Matrix Elements

Kofler, A.

Technical University of Munich, Germany, September 2023 (mastersthesis)

ei

[BibTex]

2023


[BibTex]


no image
Intrinsic complexity and mechanisms of expressivity of cortical neurons

Spieler, A. M.

University of Tübingen, Germany, March 2023 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Towards Generative Machine Teaching

Qui, Z.

Technical University of Munich, Germany, February 2023 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Generation and Quantification of Spin in Robot Table Tennis

Dittrich, A.

University of Stuttgart, Germany, January 2023 (mastersthesis)

ei

[BibTex]

[BibTex]

2022


no image
Investigating Independent Mechanisms in Neural Networks

Liang, W.

Université Paris-Saclay, France, October 2022 (mastersthesis)

ei

[BibTex]

2022


[BibTex]


no image
Multi-Target Multi-Object Manipulation using Relational Deep Reinforcement Learning

Feil, M.

Technnical University Munich, Germany, September 2022 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Independent Mechanism Analysis for High Dimensions

Sliwa, J.

University of Tübingen, Germany, September 2022, (Graduate Training Centre of Neuroscience) (mastersthesis)

ei

[BibTex]

[BibTex]


no image
On the Adversarial Robustness of Causal Algorithmic Recourse

Dominguez-Olmedo, R.

University of Tübingen, Germany, August 2022 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Independent Mechanism Analysis in High-Dimensional Observation Spaces

Ghosh, S.

ETH Zurich, Switzerland, June 2022 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Voltage dependent investigations on the spin polarization of layered heterostructues

Miller, M.

Universität Stuttgart, Stuttgart, 2022 (mastersthesis)

mms

[BibTex]

[BibTex]

2021


no image
Learning Neural Causal Models with Active Interventions

Scherrer, N.

ETH Zurich, Switzerland, November 2021 (mastersthesis)

ei

[BibTex]

2021


[BibTex]


no image
Study of the Interventional Consistency of Autoencoders

Lanzillotta, G.

ETH Zurich, Switzerland, October 2021 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Robotic Surgery Training in AR: Multimodal Record and Replay

Krauthausen, F.

pages: 1-147, University of Stuttgart, Stuttgart, May 2021, Study Program in Software Engineering (mastersthesis)

hi

[BibTex]

[BibTex]


no image
Direct detection of spin Hall effect induced torques in platinum/ferromagnetic bilayer systems

Alten, F.

Universität Stuttgart, Stuttgart, January 2021 (mastersthesis)

mms

[BibTex]


no image
Reinforcement Learning Algorithms: Analysis and Applications

Belousov, B., H., A., Klink, P., Parisi, S., Peters, J.

883, Studies in Computational Intelligence, Springer International Publishing, 2021 (book)

ei

DOI [BibTex]

DOI [BibTex]

2020


no image
Hydromagnonics: Manipulation of magnonic systems with hydrogen

Sauter, R.

Universität Stuttgart, Stuttgart, December 2020 (mastersthesis)

mms

[BibTex]

2020


[BibTex]


no image
A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning

Ahmed, O.

ETH Zurich, Switzerland, October 2020 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Deep learning for the parameter estimation of tight-binding Hamiltonians

Cacioppo, A.

University of Roma, La Sapienza, Italy, May 2020 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Learning Algorithms, Invariances, and the Real World

Zecevic, M.

Technical University of Darmstadt, Germany, April 2020 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Interaction of hydrogen isotopes with flexible metal-organic frameworks

Bondorf, L.

Universität Stuttgart, Stuttgart, February 2020 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Developing new methods for routing and optimal transport on networks

Lonardi, A.

Università degli studi di Padova, 2020 (mastersthesis)

pio

pdf [BibTex]

pdf [BibTex]


no image
Edge-Disjoint Path Problem on Stochastic Block Models through Message Passing

Lorenzo Ferretti

Sapienza Università di Roma, 2020 (mastersthesis)

pio

[BibTex]

[BibTex]


Colloidal particles supporting urase activity
Colloidal particles supporting urase activity

Baldauf, A.

Univ. of Stuttgart, 2020 (mastersthesis)

pf

[BibTex]

[BibTex]


Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

Arxiv, Foundations and Trends in Computer Graphics and Vision, 2020 (book)

Abstract
Recent years have witnessed enormous progress in AI-related fields such as computer vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several survey papers on particular sub-problems have appeared, no comprehensive survey on problems, datasets, and methods in computer vision for autonomous vehicles has been published. This monograph attempts to narrow this gap by providing a survey on the state-of-the-art datasets and techniques. Our survey includes both the historically most relevant literature as well as the current state of the art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding, and end-to-end learning for autonomous driving. Towards this goal, we analyze the performance of the state of the art on several challenging benchmarking datasets, including KITTI, MOT, and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we also provide a website that allows navigating topics as well as methods and provides additional information.

avg

pdf Project Page link Project Page [BibTex]


Diffusion studies on biomolecules by NMR
Diffusion studies on biomolecules by NMR

Bochert, I.

Univ. of Stuttgart, 2020 (mastersthesis)

pf

[BibTex]

[BibTex]

2019


no image
Analysis and modelling of information ecosystems

Emanuele Pigani

Università degli studi di Padova, October 2019 (mastersthesis)

pio

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Inferring the Band Structure from Band Mapping Data through Machine Learning

Stimper, V.

Technical University of Munich, September 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
A new approach for community detection in multilayer networks

Contisciani, M.

Università degli studi di Padova, September 2019 (mastersthesis)

pio

link (url) [BibTex]

link (url) [BibTex]


no image
Learning to Diagnose Diabetes from Magnetic Resonance Tomography

Dietz, B.

ETH Zurich, Switzerland, August 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Reinforcement Learning for a Two-Robot Table Tennis Simulation

Li, G.

RWTH Aachen University, Germany, July 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Characteristics of longitudinal physiological measurements of late-stage ALS patients

Konieczny, L.

Ludwig-Maximilians-Universität München, Germany, May 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
X-ray microscopic characterization of high-Tc-supercoductors using image processing

Bihler, M.

Universität Stuttgart, Stuttgart, 2019 (mastersthesis)

mms

[BibTex]


Active matter and self propelled microparticles
Active matter and self propelled microparticles

Kottapalli, S. N. M.

Univ. of Stuttgart, 2019 (mastersthesis)

pf

[BibTex]


Scientific Report 2016 - 2018
Scientific Report 2016 - 2018
2019 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January 2016 to December 2018. It is our third report since the founding of the institute in 2011. This status report is organized as follows: we begin with an overview of the institute, including its organizational structure (Chapter 1). The central part of the scientific report consists of chapters on the research conducted by the institute’s departments (Chapters 2 to 5) and its independent research groups (Chapters 6 to 18), as well as the work of the institute’s central scientific facilities (Chapter 19). For entities founded after January 2016, the respective report sections cover work done from the date of the establishment of the department, group, or facility.

ei hi ps pi

Scientific Report 2016 - 2018 [BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot
Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot

Petereit, R.

Technische Universität München, 2019 (mastersthesis)

dlg

[BibTex]


no image
Haptic Reality: Novel Interfacing for Informed Assembly Systems

Tashiro, N., Faulkner, R., Melnyk, S., Rosales, T.

University of Stuttgart, 2019 (mastersthesis)

hi

[BibTex]

[BibTex]


Entwicklung und Analyse neuartiger fluidischer Aktoren mit Rollmembran
Entwicklung und Analyse neuartiger fluidischer Aktoren mit Rollmembran

Hepp, J.

Technische Universität München, 2019 (mastersthesis)

dlg

Project Page [BibTex]

2018


no image
Gait analysis of running guinea fowls

Bonnet, A.

August 2018 (mastersthesis)

dlg

[BibTex]

2018


[BibTex]


Robust Visual Augmented Reality in Robot-Assisted Surgery
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M.

Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

hi

[BibTex]

[BibTex]


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

PDF [BibTex]

PDF [BibTex]