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Abstract

This work presents an approach for the modeling and
numerical optimization of ball joints within a Marker-less
Motion Capture (MoCap) framework. In skeleton based ap-
proaches, kinematic chains are commonly used to model 1
DoF revolute joints. A 3DoF joint (e.g. a shoulder or hip)
is consequently modeled by concatenating three consecutive
1 DoF revolute joints. Obviously such a representation is
not optimal and singularities can occur. Therefore, we pro-
pose to model 3 DoF joints with spherical joints or ball
joints using the representation of a twist and its exponential
mapping (known from 1 DoF revolute joints). The exact
modeling and numerical optimization of ball joints requires
additionally the adjoint transform and the logarithm of the
exponential mapping. Experiments with simulated and real
data demonstrate that ball joints can better represent arbi-
trary rotations than the concatenation of 3 revolute joints.
Moreover, we demonstrate that the 3 revolute joints repre-
sentation is very similar to the Euler angles representation
and has the same limitations in terms of singularities.

1. Introduction
In this paper, we deal with the task of human pose track-

ing, also known as motion capturing (MoCap) [11]. For this
task, a 3D model of the person and at least one calibrated
camera view is available. We are interested in finding the
3D rigid body motion (RBM) of the person, i.e. its pose
relative to the camera and the joint angles of the limbs. The
motion of the 3D model is usually parameterized by a global
RBM that encodes the overall position of the body in the
world coordinate system and by a set of joint angles forming
a kinematic chain that encode the pose configuration of the
body. The motion of one body segment can be described as
the motion of the previous segment in the kinematic chain
and an angular motion about a joint axis. Rotation about
joint axis can be represented by Euler angles, quaternions
[9, 10] or exponential coordinates [3, 4, 14], see [7] for a
comparison of rotation parameterizations. Euler angles rep-
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Figure 1: (a) Surface model mesh, vertices colored ac-
cording to joint influence, (b) 3 Revolute joints skeleton
model,(c) Ball Joints skeleton model

resent a rotation in 3D by 3 consecutive rotations about 3
different axis. Quaternions represent 3D rotations in much
the same way as complex numbers represent planar rota-
tions in the unit circle. Unlike Euler angles quaternions pro-
vide a global parameterization of SO(3), at the expense of
using 4 numbers. Bregler et al. [3] introduced the twist and
the product of exponential formulation in the context of hu-
man pose estimation. The exponential coordinates parame-
terize the space of affine isometries, SE(3) as a function of
a rotation axis and a translation along this axis. Since the
motion of the limbs consist of a rotation about a given axis,
this formalism is very convenient to represent human mo-
tion. Twist based methods [3, 4, 14], usually parameterize
RBM by a twist consisting of 6 degrees of freedom (DoF )
and model each additionalDoF in the kinematic chain with
a revolute joint, i.e. a rotation with zero pitch about a con-
stant axis location and orientation. For revolute joints the
variable is given by an angle θi ∈ [0, 2π). Consequently,
3 DoF joints (e.g. a shoulder or hip) are modeled by the
concatenation of 3 revolute joints that intersect at the same
location, see Figure 1b. Obviously, this representation is not
suitable for numerical optimization and like Euler angles it
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is not free from ”gimbal lock”. Therefore, we propose to
use ball-and-socket joints parameterized in exponential co-
ordinates for modeling body segments capable of arbitrary
rotations, we will also refer to them as ball joints.

The modeling of ball joints is interesting for medical ap-
plications [8] and computer animation [6, 5], especially for
the realistic interpolation of key poses as discussed in [1, 7].
A more anatomical exact model of the shoulder joint was
proposed by [12]. Here the focus lies on the modeling of
several redundantly involved shoulder parts which form the
shoulder joint (and its deformation). In [10] they use real
data taken from optical markers to learn the field bound-
aries of a quaternion based ball-and-socket joint. In [9] a
hierarchical model for joint limits (e.g. a manifold for pos-
sible joint shoulder and elbow configurations) is proposed
to penalize body intersections during tracking.

Researchers working in the area of computer vision usu-
ally prefer simplified human kinematic models that can be
easily related to image features and allow for a simple con-
trol of the dynamics. To this end, in this work we focus on
the integration of ball joints in a tracking system, specifi-
cally we concentrate on the linearization and parameter op-
timization from image features. We show that ball joints
parameterized in exponential coordinates can be related lin-
early to image correspondences as the commonly used 3
revolute joints, and yet have a better performance. We
present the improvements in a tracking system using ball
joints in comparison to three coupled revolute joins on both
simulated data and real sequences recorded in a lab setup.
This paper is organized as follows, in Section 2 we recall
the basics of twists, the exponential map and the logarithm,
in Section 3 we introduce the mathematical foundations to
incorporate ball joints in a human kinematic modeled by
means of twists, in Section 4 we detail our experiments and
finally we discuss the results in Section 5.

2. Twists and exponential maps

This section recalls the basics of twists, exponential
maps and logarithm, for further details we refer to [13]. Ev-
ery 3D rigid motion can be represented in an exponential
form

M = exp(θξ̂) = exp
(

ω̂ v
03×1 0

)
(1)

where θξ̂ is the matrix representation of a twist ξ ∈ se(3) =
{(v, ω̂)|v ∈ R3, ω̂ ∈ so(3)} with so(3) = {A ∈ R3×3|A =
−AT }. The Lie algebra so(3) is the tangential space of the
3D rotations. Its elements are (scaled) rotation axes, which
can be represented either as 3D vector:

θω = θ

ω1

ω2

ω3

 , with ‖ω‖2 = 1 (2)

or as a screw symmetric matrix:

θω̂ = θ

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

Consider a 3D point p rotating about an axis ω intersecting
the origin with an angular velocity θ. The matrix multiplica-
tion of θω̂ with the point p is equivalent to the cross product
of the rotation axis and the point, θω̂p = θω×p, and results
in the tangential velocity of the rotating point.
A twist contains six parameters and can be scaled to θ with a
unit vector ω. The parameter θ ∈ R corresponds to the mo-
tion velocity (i.e., the rotation velocity and pitch). For vary-
ing θ, the motion can be identified as screw motion around
an axis in space. The six twist components can be repre-
sented either as a 6D vector or as a 4× 4 matrix:

θξ = θ(ω1, ω2, ω3, v1, v2, v3) (4)

θξ̂ = θ


0 −ω3 ω2 v1
ω3 0 −ω1 v2
−ω2 ω1 0 v3

0 0 0 0

 (5)

2.1. se(3) to SE(3): From Twist to Homogeneous
matrix

To reconstruct a group action g ∈ SE(3) from a given
twist, the exponential function exp(θξ̂) = g ∈ SE(3)
must be computed. This can be done efficiently by using
the Rodriguez formula,

exp(θξ̂) =
(

exp(θω̂) (I − exp(θω̂))(ω × v + ωωT vθ)
01×3 1

)
(6)

with exp(ω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)) (7)

Note that only sine and cosine functions of real numbers
need to be computed.

2.2. SE(3) to se(3): From Homogeneous matrix to
Twist, the Logarithm

In [13], a constructive way is given to compute the twist
which generates a given rigid body motion. LetR ∈ SO(3)
a rotation matrix and t ∈ R3 a translation vector for the
rigid body motion

g =
(
R t
0 1

)
(8)

For the case R = I , the twist is given by

θξ = θ(0, 0, 0,
t

‖t‖
), θ = ‖t‖ (9)



For the other cases, the motion velocity θ and the rotation
axis ω are given by

θ = cos−1
(
tr(R)−1

2

)
, ω =

1
2 sin(θ)

r32 − r23r13 − r31
r21 − r12


(10)

To obtain v, the matrix,

A = (I − exp(θω̂))ω̂ + ωωT θ (11)

obtained from the Rodriguez formula needs to be inverted
and multiplied with the translation vector t,

v = A−1t (12)

We call the transformation from SE(3) to se(3) the loga-
rithm, log(g).

3. The tracking system
This section is divided into 5 subsections. Subsections

3.1 and 3.2 describe our tracking system and numerical opti-
mization approach. In Subsection 3.3 we describe the types
of existing joints in the kinematic chain. In Subsection 3.4
we introduce the mathematical foundations needed for the
linearization and integration of ball joints into the numer-
ical optimization scheme. Finally, in Subsection 3.5 we
explain how to update the twist parameters from frame to
frame, specifically the adjoint transformation and the loga-
rithm map need to be computed for the ball joint parameters.

3.1. Correspondences with ICP

In order to relate the surface model to the human’s im-
ages we find correspondences between the 3D surface ver-
tices and the 2D image contours obtained with background
subtraction, Figure 2. We first collect 2D-2D correspon-

(a) (b) (c)

Figure 2: (a) Original Image, (b) Background subtracted
image, (c) Projected surface mesh after convergence

dences by matching the projected surface silhouette with
the background subtracted image contour. Thereby, we ob-
tain a collection of 2D-3D correspondences since we know
the 3D counterparts of the projected 2D points of the silhou-
ette. These correspondences are used by the pose estimation
module described in the subsequent section to determine
the new pose parameters. The correspondences are itera-
tively updated according to the new pose parameters until
the overall pose converges. This approach is commonly re-
ferred to as Iterated Closest Point (ICP) [2, 15].

3.2. Pose Estimation

For pose estimation we assume a set of point correspon-
dences (Xi, xi), with 4D (homogeneous) model points Xi

and 3D (homogeneous) image points xi. Each image point
defines a 3D Plücker line Li = (ni,mi) (projective ray),
with a (unit) direction ni and momentmi [13]. We combine
the reconstructed Plücker lines with the screw representa-
tion for rigid motions and apply a gradient descent method:
Incidence of the transformed 3D point Xi with the 3D ray
Li = (ni,mi) can be expressed as

(exp(θξ̂)Xi)3×1 × ni −mi = 0 (13)

Indeed,Xi is an homogeneous 4D vector and after multipli-
cation by the 4× 4 matrix exp(θω̂) we neglect the homoge-
neous component (which is 1) to evaluate the cross product
with ni. Similar to Bregler et al. [3] we now linearize the
Equation by using exp(θξ̂) =

∑∞
k=0

(θbξ)k

k! , with I as iden-
tity matrix. This results in

((I + θξ̂)Xi)3×1 × ni −mi = 0 (14)

and can be re-ordered into an equation of the form Aξ = b.
Collecting a set of such equations (each is of rank two) leads
to an over-determined system of equations, which can be
solved using, for example, the Householder algorithm. The
Rodriguez formula can be applied to reconstruct the group
action g from the estimated twist ξ. Then the 3D points can
be transformed and the process is iterated until convergence,
see Figure 3 for a geometric interpretation.

3.3. Kinematic chains

There exist three different kinds of joints in our kine-
matic chain, see Table 1, the root joint, already explained
in the previous section, ball joints capable of any rotation
about a known joint location and simple revolute joints ca-
pable of only rotations about a fixed known axis. This last
category is very convenient to constrain the motion of 1
DoF joints (e.g the knee). Revolute joints are expressed as
special screws with no pitch of the form θj ξ̂j with known ξj
(the location of the rotation axes as part of the model repre-
sentation) and unknown joint angle θj (saddle joints can be



Joint DoF Unknown parameter Example
Root 6 ξ = (θ(v, ω)) All body
Ball 3 θω Shoulders

Saddle 2 θ1, θ2 Wrist
Revolute 1 θ Knee

Table 1: Table of existing joints to model human motion

modelled coupling two revolute joints since “gimbal lock”
is not possible). Similar to revolute joints, ball joints are
also expressed as special screws with no pitch with known
joint location q but with unknown rotation axis θω. The
scaled rotation axis (θω) is then a free parameter we want
to find. The constraint equation of a Kth joint has the form

(
j=K∏
j=0

exp(θjξj)Xi)3×1 × ni −mi = 0 (15)

which is linearized in the same way as the rigid body motion
itself:

((I +
j=K∑
j=0

θj ξ̂j) Xi)3×1 × ni −mi = 0 (16)

For a kinematic model with 1 root joint, K revolute joints
and L ball joints, Equation (16) leads to three linear equa-
tions with the six unknown pose parameters, K unknown
joint angles and L unknown scaled screw axis. Collecting a
sufficient number of equations leads to an over-determined
system of equations of the form AΘ = b where Θ =
(ξ6×1︸ ︷︷ ︸
1 root

, . . . , θωl3×1, . . .︸ ︷︷ ︸
L ball joints

, . . . , θk1×1, . . .)︸ ︷︷ ︸
K revolute joints

is the vector of un-

known parameters that determine the body configuration.
The details of the error minimized in Equation (15) and its
linearization in Equation (16) are explained in the following
subsection, specifically we focus on the part of the linear
system concerning the ball joint parameters.

3.4. Ball joints vs 3 Revolute joints

The orientation of a 3 DoF joint represented by the con-
catenation of 3 revolute joints is given by

R = eθ1ω1eθ2ω2eθ3ω3 (17)

where ω1, ω2, ω3 ∈ R3 represent the directions of each of
the three axes that intersect at the joint location. This rep-
resentation is very similar to an Euler angle representation
and has the same limitations in terms of singularities. It is
easy to see that the rotation representation in Equation (17)
is singular for θ2 =+

−
π
2 . In this singular configuration the

first and third axis ω1, ω3 are parallel and one axis of rota-
tion is lost. This is commonly known as a gimbal lock con-
figuration. In particular we note that in such configuration,

Figure 3: Optimization: Ẋi is the tangential velocity of the
point Xi and X ′i is the 3D point that projects to the 2D im-
age correspondence xi. Given a correspondence (Xi, X

′
i),

the distance between the point X ′i and Xi translated in the
tangential direction of the rotation is minimized. The action
group is recovered by taking the exponential map on the es-
timated twist parameters. Then the pointXi is transformed
and the process is iterated until convergence.

any rotation by θ1 = α degrees about the first axis followed
by the same negative rotation about the third axis θ3 = −α
leads to the same initial configuration. Actually, near singu-
larities, the size of the joint velocities needed to maintain an
end effector velocity can be extremely large and indeed lead
to numerically unstable solutions during optimization as we
show in Section 4. Furthermore, during tracking the mutual
orthogonality between the first and third axes is lost, which
results in a redundancy in the rotations that translates in a
slower convergence. In order to avoid all these problems,
we propose to model the 3 DoF joints with spherical joints
or also known in the robotics community as ball joints. A
segment connected to a ball joint is capable of any arbitrary
rotation. The concatenation of 3 revolute joints is preferred
in the robotics community because the mechanism works
better to exert forces and torques. However, since for the
task of human motion estimation this is not needed at all,
ball joints provide a more elegant and natural representation
of limb rotations that does not suffer from the shortcomings
of the previous representation. Similarly to revolute joints,
being q the location and ω the axis of rotation of the joint,
the twist corresponding to a ball joint is given by:

ξ =

»
−ω × q
ω

–
(18)

The difference now is that the axis of rotation ω is not con-
stant but rather a free parameter. Thereby, the three un-
known angles, θ1, θ2, θ3, about 3 constant axis are replaced
by a single instantaneous scaled axes of rotation θω. The
tangential velocity of a point Xi, influenced by a ball joint,
rotating about an unknown axis θω is given by :

Ẋi = θω × (Xi − q) (19)



Figure 4: Absolute Twists: ξ′N the relative twist from frame
N − 1 to frame N ; ξN is the absolute twist from frame 0 to
frame N

where Xi is a 3D point and q is the joint location where the
axis ω intersects 3. Rewriting the cross product in matrix
form and using the properties of the crossproduct 1 we can
isolate ω,

Ẋi = θbω(Xi − q) = −(Xi − q)∧θω (20)

where the operator ∧ (wedge) maps a vector a ∈ R3 into
a screw symmetric matrix A ∈ so(3) which is the matrix
representation of the cross product 2. Thereby, distance to
the projection rays can be written in matrix form as

(Xi + Ẋi)× ni −mi = − bni(Xi + Ẋi)−mi = 0 (21)

and substituting Ẋi by the expression in (20), we can isolate
θω, bni(Xi − q)∧θω = bniXi +mi (22)

to obtain three independent equations for each of the com-
ponents of θω that can be integrated into the big linear sys-
tem. Note that expression (22) already has the form of
Aθω = b, with A3×3 = n̂i(Xi − q)∧.

3.5. From differential to absolute twists

In the previous subsections we have shown the mathe-
matical tools to track a body object from frame to frame.
This implies that the solution of Equation (15) is the rel-
ative twist from consecutive pose configurations. During
tracking the surface model is updated with this differential
twists to keep track of the human pose. Although this is
enough for tracking, it is also interesting to recover the ab-
solute pose parameters, i.e. the parameters that bring the
body from the initial configuration in the first frame to the
current frame. The motivation is to obtain twist parameters
that represent the total accumulated motion which makes
the task of learning the probability densities of the param-
eters much easier. We denote ξ′N the relative twist from
frame N − 1 to frame N , and ξN the absolute twist from
frame 0 to frame N as depicted in Figure 4. For the sake of
clarity, let us drop the magnitude of the twist θ. Just bear
in mind that now all the twists ξ are scaled twists by their
own magnitude θ. The absolute twist of the global RBM

1a× b = −b× a
2a× b = (a)∧b

ξN (root joint) is recovered by updating the action group
exp(ξN−1) left multiplying it with the current relative mo-
tion and taking the logarithm.

ξN = log(

n=NY
n=0

exp(ξ′n)) = log(exp(ξ′N ) exp(ξN−1)) (23)

The joint angles of simple revolute joints can be updated by
just adding up all the relative angles,

θN = θN−1 + θ′N (24)

This is possible because the constant twists of revolute
joints are updated with the rigid motion of upper segments
in the kinematic chain. Like the root joint absolute twists of
ball joints are recovered computing the logarithm map as in
Equation (23), however these need to be taken more care-
fully because they are influenced by motion of other joints
in the chain (e.g the arms are influenced by the global rigid
motion and a spine joint). Hence, the twists need first to be
transformed from a fixed spatial coordinate system to the
body coordinate system. We use the same notation as in
[13] with ξs denoting a twist in spatial coordinates (a fixed
inertial reference frame) and ξb denoting the same twist in
the body frame coordinates. This is achieved by adapting
the twist by means of the so called adjoint transformation
(Ad):

ξ̂bn = g−1
n−1 ξ̂

s
n gn−1 (25)

ξbn = Ad−1
gn−1

ξsn (26)

where gn−1 is the 4 × 4 RBM matrix that represents the
accumulated motion of the parent joints of the ball joint in
the chain. Hence, gn−1 is then the rigid body motion that
brings the ball joint from the initial configuration in frame
0 to the frame n−1. After some calculation it is easy to de-
rive the following expected expressions for the twist com-
ponents ωb, vb in body coordinates,

ωb = R−1
n−1 ω

s (27)

vb = −ωb × qb (28)

where Rn−1 is the 3 × 3 rotation matrix corresponding to
gn−1 and qb = g−1

n−1 q
s
n−1 is the joint location in body co-

ordinates. Note that qb is constant during tracking.

4. Experiments
In this section we compare the performance of ball joints

with three concatenated revolute joints. The experiments
are divided into simulated data and real sequences in a con-
trolled lab environment with 8 calibrated cameras. The ex-
periments with simulated data can be further broken down
into two subcategories; first, the convergence performance
of a single motion is analyzed in detail and second, clouds



of motions are generated to test the behavior of both meth-
ods in a more general framework.

In the experiment shown in Figure 5b we analyze in de-
tail the parameter convergence of both methods between the
two different poses shown in Figure 5a. The two poses cor-
respond to two distant frame poses of one of the real se-
quences. To obtain the correspondences we project all the
vertices of the second pose mesh to the image plane and re-
late them to the 3D points in the first pose. Thereby, we
are able to compare the two methods for large displace-
ments. In Figure 5b, we plotted the error versus iterations,
where the error minimized (Equation (15)) is the distance
from the projection rays to the transformed 3D points of
the first pose. We can see in Figure 5b how the ball joint
representation, blue triangles graph, converges in less than
7 iterations while the coupled revolute joints take more than
25 iterations to converge. We also note that, convergence
with ball joints is monotonically decreasing in contrast to
revolute joints that fluctuates. To understand better the dif-
ference in performance, we show the evolution of the twist
parameters of the right arm for both methods during opti-
mization. On the one hand in Figure 6a we plotted the 3 un-
known angles θ1, θ2, θ3 of the revolute joints representation
and on the other hand in Figure 6b we plotted the the three
components of the unknown scaled axis of rotation θω. We
perfectly see in Figure 6a how the first and the third angles
are completely mirrored. As explained in subsection 3.4,
this redundancy is most remarkable for near singular pose
configurations corresponding to θ2 =+

−
π
2 . Actually, we can

see in Figure 6a how θ2, green dashed line, fluctuates near
π
2 . This generally results in a slower convergence, Figure
5b, and produces numerically unstable joint angle values
much higher than 2π. In contrast, the non-constant twist
axis of ball joints provides the shortest path, the geodesic,
to travel from a point to its rotated version.

To test the performance of ball joints with respect to 3
revolute joints in a more general framework we have yet
conducted another experiment. We first artificially gener-
ated 1000 poses with different arm orientations. To achieve
that, we have sampled the space of pose configurations by
varying the 3 angles defining the shoulder joint orientation
using a 3 revolute joints representation (θ1, θ2, θ3) of both
arms. Specifically, we create 3D grid of [10 × 10 × 10]
samples allowing each angle to rotate 2π, θi(k) = 2π

10 k.
Thereafter, we obtained correspondences between each pair
of poses as already explained early in the section in order
to study the convergence performance. However, this time
we are only interested in retrieving the number of iterations
needed to convergence from an initial fixed pose to each of
the 1000 generated poses. For this experiment the initial
pose is selected such that the axis of the revolute joints are
mutually orthogonal. We also note that the initial pose and
each of the 1000 poses differ not only in the arm orientation
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Figure 5: Error-Iterations: (a) Two poses used to compare
the convergence, (b) Error versus iterations for ball joints,
blue line with triangles, and coupling of revolute joints, red
line with squares
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Figure 6: Parameter convergence for both methods: (a) The
three angles θ1, θ3, in continuous lines and θ2 in dashed
line. (b) The three components of the Ball-Joint scaled axis
θω

but also in several other parameters in the chain. Hence,
each of the two pose pairs are related by more complex mo-
tions than a simple rotation about a joint. Thereby, for each
triple θ1,2,3 we obtained the iterations needed to converge
for both methods. We allow both methods to perform a
maximum of 50 iterations because convergence above this
threshold is highly unlikely. In Figure 7a we compare the
methods by plotting one cross-section of the 3D grid for
a constant θ3 = 1.8, obtaining a surface of iterations as
a function of (θ1, θ2). We observe that the resulting sur-
face using ball joints, Figure 7a, is much flatter and lower
than the one using 3 revolute joints, Figure 7b. This con-
firms that ball joints are less dependent on the final config-
uration and represent general rotations more naturally. To
get a better grasp of the overall performance we plotted the
histogram of the iterations for both methods in Figure 8a;
the lower mean and variance of the ball joints histogram
is an indicative of faster convergence and independence of
the final configuration. Additionally, we repeated the same
experiment but now starting from a non orthogonal config-
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Figure 7: Iteration surfaces: Iterations for convergence from initial configuration to final poses, θ3 = 1.8, (θ1, θ2) ∈ [0, 2π):
(a) Ball Joints, (b) 3 Revolute Joints.
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Figure 8: Histograms of iterations for both methods (Balljoints in dashed blue line, 3 revolute joints in continuous red line),
1000 poses computed varying the angles of the arm joint (θ1, θ2, θ3) ∈ [0, 2π). (a) Histogram with orthogonal axis as starting
pose, (b) Histogram with non-orthogonal axis as starting pose, (e.g. arms extended).
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Figure 9: Mesh projection overlayed with different camera views: (a),(c) Tracking with revolute joints, (b),(d) Tracking with
Ball Joints,(e) Skeleton with twist axis of revolute joints, (f) Skeleton with twist axis of ball joints

uration to show that the performance of 3 revolute joints is
also very sensible on the current configuration of the 3 axis.
See in Figure 8b how the 3 revolute joints histogram spreads
towards more iterations and does not converge in 20 cases
in comparison to the ball joints histogram that maintains
the concentration around 9 iterations. In Figure 9 we show
some examples of tracking results for both methods. In Fig-
ures 9a 9c we see problems that arise with the 3 revolute
angles representation. Note that the right arm is not well

estimated, Figures 9a9c, in contrast to ball joints, Figures
9b9d. The tracking error stems from a previous singular
configuration in which the first and third axis almost align
and one rotation is lost, see the right arm in the skeleton of
Figure 9e, preventing the model to follow the image data.
Local optimization methods might not recover from such
situations and can easily degenerate. In contrast, tracking
with ball joints poses no problem as the limbs rotate about
an optimal single instantaneous axis, see Figure 9f. Finally,
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Figure 10: Tracking snapshots: 1025 frames sequence of an actor performing several fast arm rotations

to conclude the experiments, we show several results of a
tracked sequence using ball joints in Figure 10.

5. Conclusions
We proposed to use ball joints parameterized in exponen-

tial coordinates to model three DoF joints like the shoul-
ders and hips. In this paper we focused on the integration
of such joints in a tracking system. This requires lineariza-
tion and numerical optimization. Additionally, the adjoint
transformation and the logarithm of the exponential map-
ping must be computed to recover the absolute parameters.
Experiments with simulated and real data demonstrate the
advantages of using ball joints compared to using three rev-
olute joints in a Marker-less Motion Capture system. First,
ball joints provide a parameterization free of “gimbal lock”.
Second, their behavior in differential optimization methods
is better for several reasons: convergence is less dependent
on the initial and final pose parameters and redundancy be-
tween joints is no longer a problem thanks to the single in-
stantaneous screw axis estimated at each iteration. There-
fore, modeling with ball joints allow for a more stable and
accurate capture of complex limb rotations without increas-
ing the complexity of the system.
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