
DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation

Supplementary Material

Leonid Pishchulin1, Eldar Insafutdinov1, Siyu Tang1, Bjoern Andres1,
Mykhaylo Andriluka1,3, Peter Gehler2, and Bernt Schiele1

1Max Planck Institute for Informatics, Germany
2Max Planck Institute for Intelligent Systems, Germany

3Stanford University, USA

1. Additional Results on LSP dataset

We provide additional quantitative results on LSP dataset
using person-centric (PC) and observer-centric (OC) evalua-
tion settings.

1.1. LSP PersonCentric (PC)

First, detailed performance analysis is performed when
evaluating various parameters ofAFR-CNNand results are
reported using PCK [13] evaluation measure. Then, per-
formance of the proposedAFR-CNNandDense-CNNpart
detection models is evaluated using strict PCP [4] measure.
Detailed AFR-CNN performance analysis (PCK). De-
tailed parameter analysis ofAFR-CNNis provided in Tab.1
and results are reported using PCK evaluation measure. Re-
specting parameters for each experiment are shown in the
�rst column and parameter differences between the neigh-
boring rows in the table are highlighted in bold. Re-scoring
the2000DPM proposals usingAFR-CNNwith AlexNet [8]
leads to56:9% PCK. This is achieved using basis scale1 (�
head size) of proposals and training with initial learning rate
(lr) of 0:001for 80k iterations, after which lr is reduced by
0:1, for a total number of140k SGD iterations. In addition,
bounding box regression and default IoU threshold of0:5 for
positive/negative label assignment [5] have been used. Ex-
tending the regions by4x increases the performance to 65.1%
PCK, as it incorporates more context including the informa-
tion about symmetric body parts and allows to implicitly
encode higher-order body part relations into the part detector.
No improvements observed for larger scales. Increasing lr
to 0:003, lr reduction step to160k and training for a larger
number of iterations (240k) improves the results to67:4, as
higher lr allows for for more signi�cant updates of model
parameters when �netuned on the task of human body part
detection. Increasing the number of training examples by

reducing the training IoU threshold to0:4 results into slight
performance improvement (68:8 vs. 67:4% PCK). Further
increasing the number of training samples by horizontally
�ipping each image and performing translation and scale
jittering of the ground truth training samples improves the
performance to69:6% PCK and42:3% AUC. The improve-
ment is more pronounced for smaller distance thresholds
(42:3 vs. 40:9% AUC): localization of body parts is im-
proved due to the increased number of jittered samples that
signi�cantly overlap with the ground truth. Further increas-
ing the lr, lr reduction step and total number of iterations
altogether improves the performance to72:4% PCK, and
very minor improvements are observed when training longer.
All results above are achieved by �netuning the AlexNet
architecture from the ImageNet model on the MPII training
set. Further �netuning the MPII-�netuned model on the LSP
training set increases the performance to77:9% PCK, as the
network learns LSP-speci�c image representations. Using
the deeper VGG [14] architecture improves over more shal-
low AlexNet (77.9 vs. 72.4% PCK, 50.0 vs. 44.6% AUC).
Funetuning VGG on LSP achieves remarkable 82.8% PCK
and 57.0% AUC. Strong increase in AUC (57.0 vs. 50%)
characterizes the improvement for smaller PCK evaluation
thresholds. Switching off bounding box regression results
into performance drop (81.3% PCK, 53.2% AUC) thus show-
ing the importance of the bounding box regression for better
part localization. Overall, we demonstrate that proper adap-
tation and tweaking of the state-of-the-art generic object
detector FR-CNN [5] leads to a strong body part detection
model that dramatically improves over the vanilla FR-CNN
(82:8 vs. 56:9% PCK,57:8 vs. 35:9% AUC) and signi�-
cantly outperforms the state of the art (+9 :4% PCK over the
best known PCK result [1] and+9 :7% AUC over the best
known AUC result [15].
Overall performance using PCP evaluation measure.
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Setting Head Sho Elb Wri Hip Knee Ank PCKAUC

AlexNet scale 1, lr 0.001, lr step 80k, # iter 140k, IoU pos/neg 0.5 82.2 67.0 49.6 45.4 53.1 52.9 48.2 56.935.9
AlexNetscale 4, lr 0.001, lr step 80k, # iter 140k, IoU pos/neg 0.5 85.7 74.4 61.3 53.2 64.1 63.1 53.8 65.139.0
AlexNet scale 4,lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.5 87.0 75.1 63.0 56.3 67.0 65.7 58.0 67.440.8
AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k,IoU pos/neg 0.4 87.5 76.7 64.8 56.0 68.2 68.7 59.6 68.840.9
AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.4,data augment 87.8 77.8 66.0 58.1 70.9 66.9 59.8 69.642.3
AlexNet scale 4,lr 0.004, lr step 320k, # iter 1M, IoU pos/neg 0.4, data augment 88.1 79.3 68.9 62.6 73.5 69.3 64.7 72.444.6

+ �netune LSP, lr 0.0005, lr step 10k, # iter 40k 92.9 81.0 72.1 66.4 80.6 77.6 75.0 77.951.6

VGG scale 4, lr 0.003, lr step 160k, # iter 320k, IoU pos/neg 0.4, data augment 91.0 84.2 74.6 67.7 77.4 77.3 72.8 77.950.0
+ �netune LSP lr 0.0005, lr step 10k, # iter 40k 95.4 86.5 77.8 74.0 84.5 78.8 82.6 82.857.0

Table 1: PCK performance ofAFR-CNN(unary) on LSP (PC) dataset.AFR-CNNis �netuned from ImageNet on MPII (lines
1-6, 8), and then �netuned on LSP (lines 7, 9).

Performance when using the strict “Percentage of Correct
Parts (PCP)” [4] measure is reported in Tab.2. In con-
trast to PCK measure evaluating the accuracy of predicting
body joints, PCP evaluation metric measures the accuracy
of predicting body part sticks.AFR-CNNachieves78:3%
PCP. Similar to PCK results,DeepCut SP AFR-CNNslightly
improves over unary alone, as it enforces more consistent
predictions of body part sticks. Using more general multi-
personDeepCut MP AFR-CNNmodel results into similar
performance, which shows the generality ofDeepCut MP
method. DeepCut SP Dense-CNNslightly improves over
Dense-CNNalone (84:3 vs. 83:9% PCP) achieving the best
PCP result on LSP dataset using PC annotations. This is
in contrast to PCK results where performance differences
DeepCut SP Dense-CNNvs. Dense-CNNalone are minor.

We now compare the PCP results to the state of the art.
TheDeepCutmodels outperform all other methods by a large
margin. The best known PCP result by Chen&Yuille [1] is
outperformed by10:7% PCP. This is interesting, as their
deep learning based method relies on the image conditioned
pairwise terms while our approach uses more simple geomet-
ric only connectivity. Interestingly,AFR-CNNalone outper-
forms the approach of Fan et al. [17] (78.3 vs. 70.1% PCP),
who build on the previous version of the R-CNN detector [6].
At the same time, the best performing dense architecture
DeepCut SP Dense-CNNoutperforms [17] by +14:2% PCP.
Surprisingly,DeepCut SP Dense-CNNdramatically outper-
forms the method of Tompson et al. [15] (+17.7% PCP) that
also produces dense score maps, but additionally includes
multi-scale receptive �elds and jointly trains appearance and
spatial models in a single deep learning framework. We envi-
sion that both advances can further improve the performance
of DeepCutmodels. Finally, all proposed approaches sig-
ni�cantly outperform earlier non-deep learning based meth-
ods [16, 11] relying on hand-crafted image features.

1.2. LSP ObserverCentric (OC)

We now evaluate the performance of the proposed part
detection models on LSP dataset using the observer-centric
(OC) annotations [3]. In contrast to the person-centric (PC)
annotations used in all previous experiments, OC annotations

Torso Upper Lower Upper Fore- Head PCP
Leg Leg Arm arm

AFR-CNN(unary) 93.2 82.7 77.7 75.5 63.5 91.2 78.3
+ DeepCut SP 93.3 83.2 77.8 76.3 63.7 91.5 78.7

+ appearance pairwise 93.4 83.5 77.8 76.6 63.8 91.8 78.9
+ DeepCut MP 93.6 83.3 77.6 76.3 63.5 91.2 78.6

Dense-CNN(unary) 96.2 87.8 81.8 81.672.3 95.6 83.9
+ DeepCut SP 97.0 88.8 82.0 82.4 71.8 95.8 84.3
+ DeepCut MP 96.4 88.8 80.9 82.4 71.3 94.9 83.8

Tompson et al. [15] 90.3 70.4 61.1 63.0 51.2 83.7 66.6
Chen&Yuille [1] 96.0 77.2 72.2 69.7 58.1 85.6 73.6
Fan et al. [17] � 95.4 77.7 69.8 62.8 49.1 86.6 70.1
Pishchulin et al. [11] 88.7 63.6 58.4 46.0 35.2 85.1 58.0
Wang&Li [16] 87.5 56.0 55.8 43.1 32.1 79.1 54.1

� re-evaluated using the standard protocol, for details see project page of [17]

Table 2: Pose estimation results (PCP) on LSP (PC) dataset.

do not penalize for the right/left body part prediction �ips
and count a body part to be the right body part, if it is on the
right side of the line connecting pelvis and neck, and a body
part to be the left body part otherwise.

Evaluation is performed using the of�cial OC annotations
provided by [10, 3]. Prior to evaluation, we �rst �netune the
AFR-CNNandDense-CNNpart detection models from Ima-
geNet on MPII and MPII+LSPET training sets, respectively,
(same as for PC evaluation), and then further �netuned the
models on LSP OC training set.

PCK evaluation measure.Results using OC annotations
and PCK evaluation measure are shown in Tab.3 and in
Fig. 1. AFR-CNNachieves84:2% PCK and58:1% AUC.
This result is only slightly better compared toAFR-CNN
evaluated using PC annotations (84.2 vs 82.8% PCK,58:1
vs. 57:0% AUC). Although PC annotations correspond to
a harder task, only small drop in performance when us-
ing PC annotations shows that the network can learn to
accurately predict person's viewpoint and correctly label
left/right limbs in most cases. This is contrast to earlier
approaches based on hand-crafted features whose perfor-
mance drops much stronger when evaluated in PC evaluation
setting (e.g. [11] drops from 71.0% PCK when using OC
annotations to 58.0% PCK when using PC annotations). Sim-
ilar to PC case,Dense-CNNdetection model outperforms
AFR-CNN(88.2 vs. 84.2% PCK and 65.0 vs. 58.1% AUC).
The differences are more pronounced when examining the



Setting Head Sho Elb Wri Hip Knee Ank PCKAUC

AFR-CNN(unary) 95.3 88.3 78.5 74.2 87.3 84.2 81.2 84.258.1

Dense-CNN(unary) 97.4 92.0 83.8 79.0 93.1 88.3 83.7 88.265.0

Chen&Yuille [1] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 77.544.8
Ouyang et al. [9] 86.5 78.2 61.7 49.3 76.9 70.0 67.6 70.043.1
Pishchulin et. [11] 87.5 77.6 61.4 47.6 79.0 75.2 68.4 71.045.0
Kiefel&Gehler [7] 83.5 73.7 55.9 36.2 73.7 70.5 66.9 65.838.6
Ramakrishna et al. [12] 84.9 77.8 61.4 47.2 73.6 69.1 68.8 69.035.2

Table 3: Pose estimation results (PCK) on LSP (OC) dataset.
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Figure 1: Pose estimation results over all PCK thresholds on
LSP (OC) dataset.

Torso Upper Lower Upper Fore- Head PCP
Leg Leg Arm arm

AFR-CNN(unary) 92.9 86.3 79.8 77.0 64.2 91.8 79.9

Dense-CNN(unary) 96.0 91.0 83.5 82.8 71.8 96.2 85.0

Chen&Yuille [1] 92.7 82.9 77.0 69.2 55.4 87.8 75.0
Ouyang et al. [9] 88.6 77.8 71.9 61.9 45.4 84.3 68.7
Pishchulin et. [11] 88.7 78.9 73.2 61.8 45.0 85.1 69.2
Kiefel&Gehler [7] 84.3 74.5 67.6 54.1 28.3 78.3 61.2
Ramakrishna et al. [12] 88.1 79.0 73.6 62.8 39.5 80.4 67.8

Table 4: Pose estimation results (PCP) on LSP (OC) dataset.

entire PCK curve for smaller distance thresholds (c.f. Fig.1).
Comparing the performance byAFR-CNN and

Dense-CNNto the state of the art, we observe that both
proposed approaches signi�cantly outperform other methods.
Both deep learning based approaches of Chen&Yuille [1]
and Ouyang et al. [9] are outperformed by+10:7 and
+18:2% PCK when compared to the best performing
Dense-CNN. Analysis of PCK curve for the entire range of
PCK distance thresholds reveals even larger performance
differences (c.f. Fig.1). The results using OC annotations
con�rm our �ndings from PC evaluation and clearly show
the advantages of the proposed part detection models over
the state-of-the-art deep learning methods [1, 9], as well as
over earlier pose estimation methods based on hand-crafted
image features [11, 7, 12].
PCP evaluation measure.Results using OC annotations
and PCP evaluation measure are shown in Tab.4. Overall,
the trend is similar to PC evaluation: both proposed ap-
proaches signi�cantly outperform the state-of-the-art meth-
ods withDense-CNNachieving the best result of 85.0% PCP
thereby improving by+10% PCP over the best published
result [1].

2. Additional Results on WAF dataset

Qualitative comparison of our joint formulation
DeepCut MP Dense-CNNto the traditional two-stage ap-
proachDense-CNN det ROIrelying on person detector, and
to the approach of Chen&Yuille [2] on WAF dataset is shown
in Fig. 2. See �gure caption for visual performance analysis.

3. Additional Results on MPII Multi-Person

Qualitative comparison of our joint formulation
DeepCut MP Dense-CNNto the traditional two-stage ap-
proachDense-CNN det ROIon MPII Multi-Person dataset
is shown in Fig.3 and4. Dense-CNN det ROIworks well
when multiple fully visible individuals are suf�ciently sepa-
rated and thus their body parts can be partitioned based on
the person detection bounding box. In this case the strong
Dense-CNNbody part detection model can correctly esti-
mate most of the visible body parts (image 16, 17, 19).
However,Dense-CNN det ROIcannot tell apart the body
parts of multiple individuals located next to each other and
possibly occluding each other, and often links the body parts
across the individuals (images 1-16, 19-20). In addition,
Dense-CNN det ROIcannot reason about occlusions and
truncations always providing a prediction for each body part
(image 4, 6, 10). In contrast,DeepCut MP Dense-CNNis
able to correctly partition and label an initial pool of body
part candidates (each image, top row) into subsets that cor-
respond to sets of mutually consistent body part candidates
and abide to mutual consistency and exclusion constraints
(each image, row 2), thereby outputting consistent body pose
predictions (each image, row 3).c 6= c0 pairwise terms al-
low to partition the initial set of part detection candidates
into valid pose con�gurations (each image, row 2: person-
clusters highlighted by dense colored connections).c = c0

pairwise terms facilitate clustering of multiple body part
candidates of the same body part of the same person (each
image, row 2: markers of the same type and color). In ad-
dition, c = c0 pairwise terms facilitate a repulsive property
that prevents nearby part candidates of the same type to be
associated to different people (image 1: detections of the
left shoulder are assigned to the front person only). Fur-
thermore,DeepCut MP Dense-CNNallows to either merge
or deactivate part hypotheses thus effectively performing
non-maximum suppression and reasoning about body part
occlusions and truncations (image 3, row 2: body part hy-
potheses on the background are deactivated (black crosses);
image 6, row 2: body part hypotheses for the truncated body
parts are deactivated (black crosses); image 1-6, 8-9, 13-14,
row 3: only visible body parts of the partially occluded peo-
ple are estimated, while non-visible body parts are correctly
predicted to be occluded). These qualitative examples show
thatDeepCuts MPcan successfully deal with the unknown
number of people per image and the unknown number of
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Figure 2: Qualitative comparison of our joint formulationDeepCut MP Dense-CNN(rows 2, 5) to the traditional two-stage
approachDense-CNN det ROI(rows 1, 4) and to the approach of Chen&Yuille [2] (rows 3, 6) on WAF dataset.det ROIdoes
not reason about occlusion and often predicts inconsistent body part con�gurations by linking the parts across the nearby
staying people (image 4, right shoulder and wrist of person 2 are linked to the right elbow of person 3; image 5, left elbow of
person 4 is linked to the left wrist of person 3). In contrast,DeepCut MPpredicts body part occlusions, disambiguates multiple
and potentially overlapping people and correctly assembles independent detections into plausible body part con�gurations
(image 4, left arms of people 1-3 are correctly predicted to be occluded; image 5, linking of body parts across people 3 and 4 is
corrected; image 7, occlusion of body parts is correctly predicted and visible parts are accurately estimated). In contrast to
Chen&Yuille [2], DeepCut MPbetter predicts occlusions of person's body parts by the nearby staying people (images 1, 3-9),
but also by other objects (image 2, left arm of person 1 is occluded by the chair). Furthermore,DeepCut MPis able to better
cope with strong articulations and foreshortenings (image 1, person 6; image 3, person 2; image 5, person 4; image 7, person
4; image 8, person 1). TypicalDeepCut MPfailure case is shown in image 10: the right upper arm of person 3 and both arms
of person 4 are not estimated due to missing part detection candidates.
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Figure 3: Qualitative comparison of our joint formulationDeepCut MP Dense-CNN(rows 1-3, 5-7) to the traditional two-stage
approachDense-CNN det ROI(rows 4, 8) on MPII Multi-Person dataset. See Fig.1 in paper for the color-coding explanation.



D
ee

pC
ut

M
P

de
tR

O
I

10 11 12 13 14

D
ee

pC
ut

M
P

de
tR

O
I

15 16 17 18 19 20
Figure 4: Qualitative comparison (contd.) of our joint formulationDeepCut MP Dense-CNN(rows 1-3, 5-7) to the traditional
two-stage approachDense-CNN det ROI(rows 4, 8) on MPII Multi-Person dataset. See Fig.1 in paper for the color-coding.



visible body parts per person.
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