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1. Additional Results on LSP dataset reducing the training loU threshold @4 results into slight

. . . performance improvemené&.8 vs. 67:4% PCK). Further
We provide additional quantitative results on LSP dataset increasing the number of training samples by horizontally

using person-centric (PC) and observer-centric (OC) evalua'ipping each image and performing translation and scale

tion settings. jittering of the ground truth training samples improves the
1.1. LSP Person-Centric (PC) perfor_mance 1®9:6% PCK and42:3% AUC_. The improve-
ment is more pronounced for smaller distance thresholds
First, detailed performance analysis is performed when(42:3 vs. 40:9% AUC): localization of body parts is im-
evaluating various parametersAfFR-CNNand results are  proved due to the increased number of jittered samples that
reported using PCKI[3] evaluation measure. Then, per- signi cantly overlap with the ground truth. Further increas-

formance of the proposefiFR-CNNandDense-CNNoart ing the Ir, Ir reduction step and total number of iterations
detection models is evaluated using strict PCJArjeasure.  altogether improves the performancen®4% PCK, and
Detailed AFR-CNN performance analysis (PCK).De-  Very minor improvements are observed when training longer.

tailed parameter analysis AFR-CNNis provided in Tabl All results above are achieved by netuning the AlexNet
and results are reported using PCK evaluation measure. Rearchitecture from the ImageNet model on the MPII training
specting parameters for each experiment are shown in théet. Further netuning the MPII- netuned model on the LSP
rst column and parameter differences between the neigh-training set increases the performanc@®% PCK, as the
boring rows in the table are highlighted in bold. Re-scoring network learns LSP-speci ¢ image representations. Using
the2000DPM proposals usingFR-CNNwith AlexNet [g] the deeper VGGI[4] architecture improves over more shal-
leads t056:9% PCK. This is achieved using basis schle low AlexNet (77.9 vs. 72.4% PCK, 50.0 vs. 44.6% AUC).
head size) of proposals and training with initial learning rate Funetuning VGG on LSP achieves remarkable 82.8% PCK
(Ir) of 0:001 for 80k iterations, after which Ir is reduced by and 57.0% AUC. Strong increase in AUC (57.0 vs. 50%)
0:1, for a total number o140k SGD iterations. In addition, characterizes the improvement for smaller PCK evaluation
bounding box regression and default loU threshol6:6ffor thresholds. Switching off bounding box regression results
positive/negative label assignmef} have been used. Ex- into performance drop (81.3% PCK, 53.2% AUC) thus show-
tending the regions b§x increases the performance to 65.1% ing the importance of the bounding box regression for better
PCK, as it incorporates more context including the informa- part localization. Overall, we demonstrate that proper adap-
tion about symmetric body parts and allows to implicitly tation and tweaking of the state-of-the-art generic object
encode higher-order body part relations into the part detectordetector FR-CNN] leads to a strong body part detection
No improvements observed for larger scales. Increasing Irmodel that dramatically improves over the vanilla FR-CNN
to 0:003 Ir reduction step td6k and training for a larger (828 vs. 56:9% PCK,57:8 vs. 35:9% AUC) and signi -
number of iterationsZ4Ck) improves the results t67:4, as  cantly outperforms the state of the ar®(:4% PCK over the
higher Ir allows for for more signi cant updates of model best known PCK resultl] and+9:7% AUC over the best
parameters when netuned on the task of human body partknown AUC result [ 5].

detection. Increasing the number of training examples byOverall performance using PCP evaluation measure.



Setting

Head Sho Elb Wri Hip Knee Ank PCKAUC

AlexNet scale 1, Ir 0.001, Ir step 80k, # iter 140k, loU pos/neg 0.5
AlexNetscale 4 Ir 0.001, Ir step 80k, # iter 140k, loU pos/neg 0.5

AlexNet scale 4|r 0.003, Ir step 160k, # iter 240k loU pos/neg 0.5
AlexNet scale 4, Ir 0.003, Ir step 160k, # iter 2408) pos/neg 0.4

82.2 67.0 49.6 45.4 53.1 52.9 48/3%8.9

85.7 74.4 61.3 53.2 64.1 63.1 53.33860L
87.0 75.1 63.0 56.3 67.0 65.7 58.0 BFM8
87.5 76.7 64.8 56.0 68.2 68.7 59.6 684.9

AlexNet scale 4, Ir 0.003, Ir step 160k, # iter 240k, loU pos/negdada augment 87.8 77.8 66.0 58.1 70.9 66.9 59.8 6942.3
AlexNet scale 4lr 0.004, Ir step 320k, # iter 1M, loU pos/neg 0.4, data augment 88.1 79.3 68.9 62.6 73.5 69.3 64.71 426}
+ netune LSP, Ir 0.0005, Ir step 10k, # iter 40k 92.9 81.0 72.1 66.4 80.6 77.6 75.0| 1.8

VGG scale 4, Ir 0.003, Ir step 160Kk, # iter 320k, loU pos/neg 0.4, data augment 91.0 84.2 74.6 67.7 77.4 77.3 156.0/7.9
+ netune LSP Ir 0.0005, Ir step 10Kk, # iter 40k 95.4 86.5 77.8 74.0 84.5 78.8 82.6 82%.0

Table 1: PCK performance &FR-CNN(unary) on LSP (PC) datase8FR-CNNis netuned from ImageNet on MPII (lines
1-6, 8), and then netuned on LSP (lines 7, 9).

Performance when using the strict “Percentage of Correct
Parts (PCP)” 4] measure is reported in Tal. In con-

trast to PCK measure evaluating the accuracy of predicting
body joints, PCP evaluation metric measures the accuracy

Torso Upper Lower Upper Fore- Head PCP
Leg Leg Arm arm

AFR-CNN(unary) 93.2 827 77.7 755 635 912 783
+ DeepCut SP 93.3 832 77.8 76.3 63.7 915 78.7
+ appearance pairwise 93.4 835 77.8 76.6 63.8 91.8 78.9

of predicting body part sticksAFR-CNNachieves7’8:3% + DeepCut MP 936 833 776 763 635 912 786
PCP. Similar to PCK resultﬁ)eepCut SP AFR-CNBJightIy Dense-CNNunary) 96.2 87.8 81.8 81.672.3 95.6 83.9
. . . + DeepCut SP 97.0 88.8 82.0 824718 95.8 84.3
improves over unary alone, as it enforces more consistent + DeepCut MP 96.4 888 80.9 824 713 94.9 83.8
predictions of body part sticks. Using more gener_al _multi- Tompson et al. 9] 903 704 611 630 5.2 837 66.6
personDeepCut MP AFR-CNMhodel results into similar Chen&uille [1] 96.0 772 722 697 581 856 73.6
. . Fanetal. [7] 95.4 77.7 69.8 62.8 49.1 86.6 70.1
performance, which shows the generalityDEepCut MP Pishchulin et al. 1] 88.7 63.6 58.4 460 352 851 580
method. DeepCut SP Dense-CN§lightly improves over Wanga&Li [16] 87.5 56.0 558 431 321 79.1 54.1

re-evaluated using the standard protocol, for details see project pagyqg of [

Dense-CNNilone 84:3 vs. 83:9% PCP) achieving the best

PCP result on LSP dataset using PC annotations. This Srable 2: Pose estimation results (PCP) on LSP (PC) dataset.
in contrast to PCK results where performance differences

DeepCut SP Dense-CNi¢. Dense-CNNilone are minor. q ; lize for the riaht/left bod ¢ prediction i
We now compare the PCP results to the state of the art, 0 Not penaize for the ngniiett body part preciction 1ps

TheDeepCuimodels outperform all other methods by a large gnd co_unt a bOdY part to be t_he nght_ body part, ifitis on the
: g right side of the line connecting pelvis and neck, and a body
margin. The best known PCP result by Chen&Yuill¢is .
! A . . part to be the left body part otherwise.
outperformed byl0:7% PCP. This is interesting, as their Evaluation i ; 4 using the of cial OC )
deep learning based method relies on the image conditioned valuation is performed using the of cia annotations

pairwise terms while our approach uses more simple geometﬁ?é"?ﬂl\?y [db ] P”ngto evagjanon_, we rzt lneftune lthe
ric only connectivity. InterestinglyAFR-CNNalone outper- A andDense-CNart detection models from Ima-

forms the approach of Fan et al.{] (78.3 vs. 70.1% PCP), geNet on MPII and MPII+LSPET training sets, respectively,

who build on the previous version of the R-CNN detectdr [ (same as for PC evaluation), and then further netuned the

At the same time, the best performing dense architecturemOdeIS on LSP OC training set.

DeepCut SP Dense-CNMitperforms | 7] by +14:2% PCP. PCK evaluation measure. Results using OC annotations
Surprising|y’DeepCut SP Dense-CN}damaﬁca”y outper- and PCK evaluation measure are shown in Tabnd in
forms the method of Tompson et al.q (+17.7% PCP) that ~ Fig. 1. AFR-CNNachieves34:2% PCK and58:1% AUC.
also produces dense score maps, but additionally included his result is only slightly better compared A¢-R-CNN
multi-scale receptive elds and jointly trains appearance and evaluated using PC annotations (84.2 vs 82.8% P33,
spatial models in a single deep learning framework. We envi-Vs. 57:0% AUC). Although PC annotations correspond to
sion that both advances can further improve the performance2 harder task, only small drop in performance when us-
of DeepCun’node|s_ Fina"y, all proposed approaches Sig_ Ing PC annotations shows that the network can learn to

ni cantly outperform earlier non-deep learning based meth- accurately predict person's viewpoint and correctly label
ods [L6, 11] relying on hand-crafted image features. left/right limbs in most cases. This is contrast to earlier

approaches based on hand-crafted features whose perfor-
mance drops much stronger when evaluated in PC evaluation
setting (e.g. [1] drops from 71.0% PCK when using OC
We now evaluate the performance of the proposed partannotations to 58.0% PCK when using PC annotations). Sim-
detection models on LSP dataset using the observer-centridlar to PC caseDense-CNNletection model outperforms
(OC) annotationsd]. In contrast to the person-centric (PC) AFR-CNN(88.2 vs. 84.2% PCK and 65.0 vs. 58.1% AUC).
annotations used in all previous experiments, OC annotationsThe differences are more pronounced when examining the

1.2. LSP Observer-Centric (OC)



Setting Head Sho Elb Wri Hip Knee Ank PGKUC 2. Additional Results on WAF dataset

AFR-CNN(unary) 95.3 88.3 78.5 74.2 87.3 84.2 81.2 §468.1 o . o .
Dense-CNNunary)  97.4 92.0 83.8 790 931 88.3 83.7 BHG5.0 Qualitative comparison of our joint formulation

, - : DeepCut MP Dense-CNl the traditional two-stage ap-
Chen&Vuille [1] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 7144.8 .
Ouyang et al. {] 865 78.2 61.7 49.3 76.9 700 67.6 704B.1 proachDense-CNN det RQklying on person detector, and
Pishchulin et. [ 1] 87.5 77.6 61.4 47.6 79.0 75.2 68.4 7145.0 to the approach of Chen&Yuille’] on WAF dataset is shown
Kiefel&Gehler [7] 83.5 73.7 55.9 36.2 73.7 70.5 66.9 653.6 . . . f . | f Vs
Ramakrishna et al1}] 84.9 77.8 61.4 47.2 73.6 69.1 68.8 693b.2 in Fig. 2. See gure caption for visual performance analysis.

Table 3: Pose estimation results (PCK) on LSP (OC) dataset.3. Additional Results on MPII Multi-Person

PCK total, LSP OC

- Qualitative comparison of our joint formulation
8 ST bl DeepCut MP Dense-CNW the traditional two-stage ap-
2 T proachDense-CNN det RGin MPII Multi-Person dataset
[ . is shown in Fig.3 and4. Dense-CNN det RO&orks well
g w0 Zamow when multiple fully visible individuals are suf ciently sepa-
g —ouamatal s rated and thus their body parts can be partitioned based on
wl S Ramakrshra tal, ECOV14 the person detection bounding box. In this case the strong
% 0,02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Dense-CNNoody part detection model can correctly esti-

. | Nomalized distance mate most of the visible body parts (image 16, 17, 19).
Figure 1: Pose estimation results over all PCK thresholds onpyowever, Dense-CNN det ROtannot tell apart the body
LSP (OC) dataset. parts of multiple individuals located next to each other and

Torso Upper Lower Upper Fore- Head PCP possibly ocqlud_mg each _other, and often links the body pgrts
Leg Leg Arm arm across the individuals (images 1-16, 19-20). In addition,
AFR-CNN(unary) 929 863 798 77.0 642 91.8 79.9 Dense-CNN det RGtannot reason about occlusions and

truncations always providing a prediction for each body part

Dense-CNNunary) 96.0 91.0 835 828 71.8 96.2 85.0 .
(image 4, 6, 10). In contrasDeepCut MP Dense-CNI¥

Chen&Vuille [1] 92,7 829 77.0 69.2 554 87.8 75.0

Ouyang et al.{] 886 77.8 719 619 454 84.3 68.7 able to correctly partition and label an initial pool of body

Pishchulin et. 11] 88.7 789 732 618 450 851 69.2 H ; ; _
KiefelaGehler 1] 843 745 676 541 283 783 612 part candidates (each image, top row) into subsets thgt cor
Ramakrishnaetall}] 88.1 79.0 73.6 62.8 39.5 80.4 67.8 respond to sets of mutually consistent body part candidates

and abide to mutual consistency and exclusion constraints
Table 4: Pose estimation results (PCP) on LSP (OC) dataset(each image, row 2), thereby outputting consistent body pose
predictions (each image, row 3).6 c°pairwise terms al-
entire PCK curve for smaller distance thresholds (c.f. Ejg.  low to partition the initial set of part detection candidates
Comparing the performance byAFR-CNN and into valid pose con gurations (each image, row 2: person-
Dense-CNNo the state of the art, we observe that both clusters highlighted by dense colored connectioas).c’
proposed approaches signi cantly outperform other methods pairwise terms facilitate clustering of multiple body part
Both deep learning based approaches of Chen&Yuille [ candidates of the same body part of the same person (each
and Ouyang et al.9] are outperformed by+10:7 and image, row 2: markers of the same type and color). In ad-
+18:2% PCK when compared to the best performing dition,c = c®pairwise terms facilitate a repulsive property
Dense-CNNAnalysis of PCK curve for the entire range of that prevents nearby part candidates of the same type to be
PCK distance thresholds reveals even larger performanceassociated to different people (image 1: detections of the
differences (c.f. Figl). The results using OC annotations left shoulder are assigned to the front person only). Fur-
con rm our ndings from PC evaluation and clearly show thermore DeepCut MP Dense-CNallows to either merge
the advantages of the proposed part detection models ovesr deactivate part hypotheses thus effectively performing
the state-of-the-art deep learning methods], as wellas  non-maximum suppression and reasoning about body part
over earlier pose estimation methods based on hand-crafte@cclusions and truncations (image 3, row 2: body part hy-

image featuresi[l, 7, 17]. potheses on the background are deactivated (black crosses);
PCP evaluation measure.Results using OC annotations image 6, row 2: body part hypotheses for the truncated body
and PCP evaluation measure are shown in Falverall, parts are deactivated (black crosses); image 1-6, 8-9, 13-14,

the trend is similar to PC evaluation: both proposed ap-row 3: only visible body parts of the partially occluded peo-
proaches signi cantly outperform the state-of-the-art meth- ple are estimated, while non-visible body parts are correctly
ods withDense-CNMchieving the best result of 85.0% PCP predicted to be occluded). These qualitative examples show
thereby improving by+10% PCP over the best published thatDeepCuts MRan successfully deal with the unknown
result [1]. number of people per image and the unknown number of
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Figure 2: Qualitative comparison of our joint formulatibeepCut MP Dense-CN{ows 2, 5) to the traditional two-stage
approactDense-CNN det RQfows 1, 4) and to the approach of Chen&Yuilig [rows 3, 6) on WAF datasetlet ROldoes

not reason about occlusion and often predicts inconsistent body part con gurations by linking the parts across the nearby
staying people (image 4, right shoulder and wrist of person 2 are linked to the right elbow of person 3; image 5, left elbow of
person 4 is linked to the left wrist of person 3). In contr@sepCut MPpredicts body part occlusions, disambiguates multiple

and potentially overlapping people and correctly assembles independent detections into plausible body part con gurations
(image 4, left arms of people 1-3 are correctly predicted to be occluded; image 5, linking of body parts across people 3 and 4 is
corrected; image 7, occlusion of body parts is correctly predicted and visible parts are accurately estimated). In contrast to
Chen&Vuille [2], DeepCut MPbetter predicts occlusions of person's body parts by the nearby staying people (images 1, 3-9),
but also by other objects (image 2, left arm of person 1 is occluded by the chair). Furthebmep&ut MHFs able to better

cope with strong articulations and foreshortenings (image 1, person 6; image 3, person 2; image 5, person 4; image 7, person
4; image 8, person 1). TypicBleepCut MFfailure case is shown in image 10: the right upper arm of person 3 and both arms

of person 4 are not estimated due to missing part detection candidates.
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Figure 3: Qualitative comparison of our joint formulatibeepCut MP Dense-CN{{ows 1-3, 5-7) to the traditional two-stage
approaciDense-CNN det RGrows 4, 8) on MPII Multi-Person dataset. See Hign paper for the color-coding explanation.
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Figure 4: Qualitative comparison (contd.) of our joint formulatid@epCut MP Dense-CN{fows 1-3, 5-7) to the traditional

two-stage approaddense-CNN det RQtows 4, 8) on MPII Multi-Person dataset. See Hign paper for the color-coding.



visible body parts per person.
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