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Abstract— The average communication in a typical event-
based state estimation scenario is analyzed analytically and
in robot experiments. A sender observes a linear Gaussian
process and sporadically transmits mean and variance to a
remote estimator according to an event-based protocol. By
exploiting the event-based architecture, an expression for the
average communication rate is obtained, which is useful for
numerical computation. In addition, approximate closed-form
expressions for the steady-state rate (given in terms of problem
and design parameters) are derived. The analytic results for
the communication rate are verified in experiments of a one-
dimensional robot link.

I. INTRODUCTION

Event-based methods for control, estimation, and opti-

mization (see e.g. [1]–[3]) aim at achieving a better compro-

mise between system performance and usage of system re-

sources (e.g. processing and communication) than traditional

designs. In contrast to the traditional time-based designs,

data are not processed or transmitted at pre-determined

times (typically, periodically at fixed rates), but only when

needed to ensure a certain system-level performance. This

is achieved by introducing event triggering mechanisms that

decide at run time whether a controller or estimator update

is necessary (e.g. when a control error grows too large or an

estimate becomes too uncertain). In this way, communication

and processing instants can typically be reduced significantly.

While fewer data usually corresponds to less accuracy,

reducing communication may well improve performance

when viewed from a system-level perspective. For example,

reducing data transmissions in battery-powered wireless net-

works increases the lifespan of the system, or a blocked link

being a bottleneck in a network might be relived by reducing

traffic. Being able to estimate the resulting communication

rates is of prime interest to evaluate an event-based system

design. For example, the communication rate allows one to

estimate resource savings, to design system components such

as link bandwidth, and – last, but not least – judge whether

the increased overhead compared to traditional system design

is justified.

While significant savings in data rates have been demon-

strated in simulation studies (e.g. [4]–[7]) and experiments

on physical platforms (e.g. [8]–[10]), there are fewer results

that provide analytic expressions for the communication rate

based on problem and design parameters. Obviously, such

formula, even if only approximate, are helpful to support
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Fig. 1. High-level architecture of the considered event-based communica-
tion scheme. Event-based communication is indicated by dashed lines. The
object of this paper is to derive an expression for the average communication
rate from Sender to Receiver. The input uk is assumed known on both sides,
which can be achieved through another event-based link, [11].

design decisions at an early stage, or back up simulation

results, for instance.

Contributions: In this paper, we analyze the commu-

nication rate for an archetypal setup for event-based state

estimation. We consider the remote estimation scenario de-

picted in Fig. 1, where a smart sensor (“Sender”) estimates

the state of a dynamic process from measurements and

sporadically transmits its estimates to a remote estimator

(“Receiver”) over a network link (details of the architecture

to be discussed in Sec. II). For an assumed linear Gaussian

process and typical implementations of the event trigger and

estimation routines, we compute the expected communica-

tion rate; that is, we answer: How often is a communication

from Sender to Receiver triggered on average?

Let γk denote the binary random variable indicating

whether communication occurs (γk = 1) or not (γk = 0).

In detail, we make the following contributions:

– An expression for the expected communication rate

IE [γk] is derived, which exploits the structure of the

event-based architecture and allows for recursive com-

putation via numerical integration.

– Observing that IE [γk] converges to a steady-state value

in the considered scenario, we compute the steady-state

rate γ̄ = limk→∞ IE [γk].
– Through Taylor series approximations of different order,

we derive closed-form expressions for γ̄ in terms of the

process parameters and the triggering threshold.

– The analytic communication rates are compared to

empirical rates obtained in experiments estimating the

position and velocity of a robot link.

The architecture in Fig. 1 is adopted from [11], where it

was proposed for remote operation of robots (see Sec. II
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for details). The main contribution of this work is the

theoretical and experimental communication rate analysis for

this architecture.

Related work: For surveys of recent results in event-

based state estimation, we refer the reader to [3], [12],

[13] and references therein. Related work also analyzing

communication rates in event-based state estimation can be

found in [14]–[16], which we briefly review next.

Typically, posterior state distributions in event-based esti-

mation are non-Gaussian, even if the process is linear Gaus-

sian (see e.g. [7], [15], [17], [18]). This fundamental issue

considerably complicates analysis of event-based estimation

schemes in general, and the computation of communication

rates in particular. Hence, a common approach is to ap-

proximate the conditional state distribution as actually being

Gaussian to facilitate further computations. Wu et al. used

this approach to compute approximate communication rates

for a scenario similar to the one herein [14]. In contrast,

we do not approximate the posterior as being Gaussian,

but arrive at an expression for the communication rate by

exploiting the communication architecture (in particular, the

fact that the posterior after a communication is Gaussian).

In a second step, to obtain closed-form expressions in

terms of the problem parameters, we employ Taylor series

approximations, which can be customized to a desired order.

Instead of computing the expected communication rate

directly, Shi et al. provide lower and upper bounds on it by

employing ellipsoidal approximations to the triggering set,

[15]. Han et al. used a different trigger mechanism altogether,

[16]. By means of stochastic triggering, the probability dis-

tributions become tractable (i.e. Gaussian), which simplifies

analysis such as of communication rates, but relinquishes

guaranteed bounds on the prediction error.

Notation: In the following, k is used as a general time

index, and sk denotes the signal s evaluated at index k. We

use sk:k+L with L ≥ 0 to denote the concatenation of the

vectors sk, sk+1, . . . , sk+L into one long vector.

For discrete random variables (RVs) x and y, we write

p(x) and p(x| y) for the probability and conditional probabil-

ity. For continuous RVs x and y, f(x) and f (x| y) denote the

(conditional) probability density functions (PDF). We use the

notation (x | y) to refer to the random variable x conditioned

on y, and IE [ ·| ·] is the conditional mean.

For a symmetric, positive definite matrix A, A
1

2 denotes

the Cholesky decomposition of A such that (A
1

2 )TA
1

2 = A.

II. EVENT-BASED STATE ESTIMATION ARCHITECTURE

This section introduces the components of the remote esti-

mation problem and the event-based architecture as shown in

Fig. 1. This event-based architecture has been applied in [11]

for remote operation of a robot. In this example, the robot

estimates a state xk (e.g. including its own state and the state

of the environment) from measurements yk, and transmits

its estimates, such as posterior mean x̂+
k and variance P+

k ,

to an operator for the purpose of monitoring, for example.

Communication occurs according to an event-based protocol

ensuring that data is transferred only when necessary. Thus,

the robot constitutes the sender in Fig. 1, and the operator

corresponds to the receiver. The framework in [11] proposes

an event-based protocol also for the link from operator to

robot, which is used to transmit control inputs or policies.

This ensures that the current input uk is known on both sides,

which is also assumed herein (cf. Fig. 1). This work focuses

on the robot-to-operator only as shown in Fig. 1. Moreover,

we consider the special case of a linear Gaussian process.

While motivated from the remote robot operation problem

in [11], the considered architecture is not specific to this

problem and applies to other remote estimation scenarios

likewise.

The key idea of the event-based architecture is to imple-

ment a state predictor on both sides, the sender and the

receiver. On the receiver side, the state predictor makes

predictions of the state to compensate for times when no

up-to-date estimation data is communicated. The sender

implements a copy of the same state prediction and compares

this to the current estimates in order to decide when new

data should be triggered. In the next subsections, all blocks

of Fig. 1 are introduced.

A. Process model

We consider the linear, discrete-time process model

xk+1 = Axk +Buk + vk

yk = Cxk + wk

(1)

with state xk ∈ R
n, control input uk, observation yk ∈ R

m,

and zero-mean, Gaussian distributed noise vk and wk with

covariances Q ≥ 0 and R > 0. We assume that (A,C) and

(A,G) are detectable and stabilizable, respectively, where

Q = GTG. The initial state x0 is Gaussian with zero

mean and covariance P x
0 > 0. In this work, we focus

on the pure state estimation problem and assume that the

input uk is known to both the receiver and the sender

(cf. Fig. 1). Furthermore, the model parameters of (1) are

assumed known.

B. State estimation

The sender has periodic access to all measurements Yk :=
{y0, . . . , yk}, from which it estimates the system state xk

(State Estimation in Fig. 1). From standard filtering the-

ory [19], the conditional state (xk|Yk) is known to be

Gaussian distributed, and the optimal Bayesian estimator is

the discrete-time Kalman filter, which recursively computes

mean and variance:

x̂−
k = IE [xk|Yk−1] P−

k = IE
[
(xk−x̂−

k )(xk−x̂−
k )

T
∣
∣Yk−1

]

x̂+
k = IE [xk|Yk] P+

k = IE
[
(xk−x̂+

k )(xk−x̂+
k )

T
∣
∣Yk

]
.

The recursive update equations can be found in [19], for

example.

C. State prediction

The state prediction on sender and receiver (see Figure 1),

maintains an estimate zk of the state xk, which is predicted

using the process model (1) at times of no communication,



and reset with the Kalman filter estimate x̂+
k when a com-

munication is triggered. That is,

zk =

{

x̂+
k if γk = 1

z−k if γk = 0
(2)

where z−k := Azk−1 + Buk−1, and the binary variable γk
indicates whether a communication was triggered (γk = 1)

or not (γk = 0). The event triggering mechanism will be

specified in the next subsection.

In the later analysis, ℓk will be used to denote the most

recent time when the predictor was updated, i.e.

ℓk := max{i ≤ k | γi = 1}. (3)

We will drop the argument k and usually write ℓ instead of

ℓk when k is clear from context. The information set that the

receiver (and thus the state predictor) has available at time

k is given by1

Ik = {y0, . . . , yℓ} ∪ {γ0, . . . , γk}. (4)

Since the Kalman filter in Sec. II-B keeps track of the

entire posterior distribution f(xk|Yk) through mean x̂+
k and

variance P+
k , communicating mean and variance is sufficient

to synchronize the conditional state information at sender and

receiver; that is,

f (xk| Ik) = f (xk|Yk) for γk = 1. (5)

D. Event trigger

The event trigger decides whether or not the conditional

state PDF f(xk|Yk) (here encoded in mean x̂+
k and variance

P+
k ) is transmitted to the receiver (Fig. 1). Different trigger-

ing mechanisms are conceivable; herein, we place a threshold

on the difference between the current measurement and the

prediction of the measurement

ek := yk − Cz−k (6)

which can be rewritten as ek = Cǫk + wk with the state

prediction error

ǫk := xk − z−k . (7)

The event trigger is then given by

γk =

{

1 if ‖ek‖∞ ≥ δ

0 otherwise.
(8)

Triggers based on the measurement prediction error (6) are

known as measurement-based or innovation-based triggers

and have been found to be effective triggers for state esti-

mation, [5], [7].

We use χ to define the set of values e ∈ R
m that do not

cause communication using the trigger (8)

χ := {e ∈ R
m | ‖e‖∞ < δ} . (9)

1We remark that the state predictor (2) does not exploit the information
that is contained in the events, where no communication happens (i.e. γk =
0 for k > ℓk). Conditioning on the information γk = 0 typically yields
significantly more involved filtering algorithms. See discussion in [7], for
example.

III. PROBLEM FORMULATION

The object of this paper is to obtain an expression for

the expected communication rate IE [γk]. In principle, we

can compute the expected communication rate from the

probability density function (PDF) of the error (6)

IE [γk] = 1− p(γk=0) = 1−

∫

χ

f(ek) dek. (10)

Unfortunately, one cannot easily express the density f(ek)
in general since zk depends on the communication history.

However, we can exploit the event-based communication

scheme introduced in the previous section to facilitate the

communication rate analysis. In particular, we shall use the

fact that the error following an event is normally distributed.

Indeed, if a communication is triggered at time k (γk = 1),

f(xk|Ik) is Gaussian (see (5)), and likewise the distribution

of the error p(ek+1| Ik), as well as future predicted errors

p(ek+L, . . . , ek+1| Ik), L ≥ 1. This observation will be used

to efficiently compute the communication rate.

The next section formally establishes the above result,

which is then used in Sec. V to derive an expression for

IE [γk], which can be used for numerical integration. Further-

more, we address the steady-state communication rate and

provide (based on Taylor-series approximations of different

orders) closed-form expressions that allow to compute the

steady-state rate directly from the problem parameters A, C,

Q, R, and δ.

IV. PRELIMINARIES

The following lemma establishes that the multivariate

distribution of all state predictions errors (6) for all times

following after a communication event, i.e. k > ℓk, is

Gaussian.

Lemma 1: The joint PDF f (ǫℓ+1:ℓ+L| Iℓ) =
f (ǫℓ+1, . . . , ǫℓ+L| Iℓ), L ≥ 1 is described by a multivariate

Gaussian distribution with zero mean and covariance

Φℓ+1:ℓ+L. Φℓ+1:ℓ+L consists of L × L blocks where the

(i, j) block is given by

AiP+
ℓ

(
Aj
)T

+
i∑

k=1

Ai−kQ
(
Aj−k

)T
(11)

for j ≥ i ≥ 1 and i > j ≥ 1 follows from symmetry.

Proof: Let ∆ℓ :=
(
xℓ − x̂+

ℓ

∣
∣ Iℓ
)
. Because of the com-

munication at ℓ, we have
(
xℓ − x̂+

ℓ

∣
∣ Iℓ
)
≡
(
xℓ − x̂+

ℓ

∣
∣Yℓ

)
;

that is, the estimation errors at sender and receiver have

the same distribution. Hence, ∆ℓ is Gaussian distributed

with zero mean and covariance P+
ℓ (see e.g. [20]). For the

prediction error (7), it follows that

(ǫℓ+1| Iℓ) =
(
xℓ+1 − z−ℓ+1

∣
∣ Iℓ
)

= (Axℓ −Azℓ + vℓ| Iℓ)

= A
(
xℓ − x̂+

ℓ

∣
∣ Iℓ
)
+ (vℓ| Iℓ)

= A∆ℓ + vℓ

(ǫℓ+2| Iℓ) = A2∆ℓ +Avℓ + vℓ+1...
(ǫℓ+i| Iℓ) = Ai∆ℓ +

i∑

k=1

Ai−kvℓ+k−1

(12)



and hence,














ǫℓ+1

ǫℓ+2

...

ǫℓ+i








∣
∣
∣
∣
∣
∣
∣
∣
∣

Iℓ







=








A
A2

...

Aiℓ







∆ℓ +








I · · · 0

A I · · · 0
...

. . .

Ai−1Ai−2 · · · I















vℓ
vℓ+1

...

vℓ+i−1








Since ∆ℓ and vk for all k > ℓ are independent, the Gaussian

property is immediate [21], and mean and variance follow

from the above expression.

From (1), (6), and (7), we have ek = Cǫk + wk. Thus, the

Gaussian property of ek follows directly from Lemma 1 and

independence of wk.

Lemma 2: The joint PDF f (eℓ+1:ℓ+L| Iℓ) =
f (eℓ+1, . . . , eℓ+L| Iℓ), L ≥ 1 is a multivariate Gaussian

with zero mean and covariance

Σℓ+1:ℓ+L = (IL ⊗ C) Φℓ+1:ℓ+L

(
IL ⊗ CT

)
+ IL ⊗R (13)

where IL ∈ R
L×L denotes the identity matrix and A⊗B is

used to denote the Kronecker product of A and B.

V. COMMUNICATION RATE ANALYSIS

The expected communication rate IE [γk] = p(γk = 1) can

be expressed generically by marginalizing the joint probabil-

ity p(γk, . . . , γ0) over the past communication decisions γi,
i < k:

IE [γk] = p(γk = 1) = 1− p(γk = 0)

= 1− p(γk = 0, γk−1 = 0)− p(γk = 0, γk−1 = 1)
...
= 1−

∑

Γi∈{0,1}
i=0,...,k−1

p(γk = 0, γk−1 = Γk−1, . . . , γ0 = Γ0) . (14)

The summation in (14) involves all 2k combinations; that is,

computation grows exponentially. We can reduce the number

of summands from 2k to k using the result from Sec. IV.

Lemma 2 states that the joint PDF of the triggering signals

eℓ+1, . . . , eℓ+L following a communication event at time ℓ
are Gaussian and known. Hence, also the probability of not

communicating consecutively L times in a row after a com-

munication at time ℓ, i.e. p(γℓ+L = 0, . . . , γℓ+1 = 0|γℓ = 1),
can be computed. Therefore, the branches in equation (14)

do not need to be expanded beyond a communication event

γi = 1. Setting p0 := p(γk = 0, . . . , γ0 = 0) we thus obtain

IE [γk] = p(γk = 1)

= 1−

k−1∑

i=0

p(γk = 0, . . . , γi+1 = 0, γi = 1)− p0

= 1−
k−1∑

i=0

p(γk = 0, . . . , γi+1 = 0|γi = 1) p(γi = 1)− p0

= 1−

k−1∑

i=0

∫

χk−i

f(ei+1:k|γi = 1) dei+1:k p(γi = 1)− p0

(15)

where we introduced the set notation

χd := χ× χ · · · × χ
︸ ︷︷ ︸

d-times

(16)
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Fig. 2. Evolution of the communication rate γk for the scalar system in
Example 5.1. Blue: Monte Carlo simulation. Red: computed from (15) by
numerical integration.

with χ as in (9) to denote the integration set. From Lemma 2,

we have that f(ei+1:k|γi = 1) is Gaussian with zero mean

and variance Σi+1:k, which can be computed from (13).

Equation (15) can be used to compute the average com-

munication rate recursively because IE [γk] depends on the

previous p(γi) = IE [γi] , i = 1, . . . , k − 1. Each iteration

requires the integration of a multivariate Gaussian.

Example 5.1: For a scalar linear system (1) with A = 1.1,

C = 1, Q = 0.05, R = 0.1, P x
0 = 1.0 , and δ = 0.15,

the average communication rate IE [γk] is shown for the

first 20 time steps in Fig. 2. The example compares the

communication rate computed by numerical integration of

(15) (red) with the communication rate obtained from Monte

Carlo simulation (blue). The sampled communication rate

was obtained based on 5× 108 iterations. The Cuba frame-

work [22] was used for the multi-dimensional integration in

(15).

A. Stationary average communication rate

In the example in Fig. 2, we see that the average com-

munication rate quickly converges to a stationary value

after a few steps, which corresponds to the typical behavior

also observed in other numerical simulations. Assuming that

indeed the communication rate converges to a stationary

value, γ̄ = limk→∞ IE [γk], we derive an expression for

the stationary rate γ̄ from the problem data (system model

and communication threshold) in this and the following

subsections.

The stationary communication rate is particularly interest-

ing when designing an event-driven system, as it directly

relates to the average use of communication and processing

resources, which translate to energy cost, bandwidth use,

etc. For example, network capacity and bandwidth can be

optimized based on these stationary rates.

Before we turn to the analysis of the stationary average

communication rate, we establish some assumptions. The

main assumption is that the average communication rate

indeed converges:

Assumption 1: The triggering probability p(γk = 1) =
IE [γk] converges to a steady-state value; that is, there exists

γ̄ ∈ R such that limk→∞ IE [γk] = γ̄.

Based on all numerical simulations we have done, we conjec-

ture that this assumption actually holds true in general (under

the assumptions of a time-invariant system, stationary noise,

detectability and stabilizability property as in Sec. II-A).



However, rigorously establishing this convergence is beyond

the scope of this paper and deferred to future work.

From the detectability and stabilizability assumptions on

the system (1), the variance P+
k of the Kalman filter running

on the sender side (Sec. II-B) is known to converge to

the unique positive definite solution Ps to the discrete-time

Riccati equation (see e.g. [19])

APsA
T − Ps −APsC

T(CPsC
T +R)−1CPsA

T +Q = 0.

For the following analysis, we shall assume that the Kalman

filter on the sender side has converged:

Assumption 2: P+
k = Ps for all k.

From Lemma 2 with Assumption 2, it follows that

p(γk+n = 0, . . . , γk+1 = 0| γk = 1) =

p(γj+n = 0, . . . , γj+1 = 0| γj = 1) ∀n, k, j ∈ N.
(17)

That is, p(γk+L = 0, . . . , γk+1 = 0 | γk = 1), L ≥ 1 only

depends on the length L but not on time k. To facilitate the

notation, we introduce

PL := p(γL = 0, . . . , γ1 = 0| γ0 = 1) , L ≥ 1. (18)

Using Assumption 2 and (18), we rewrite (15) as

IE [γk] = p(γk = 1) = 1−

k−1∑

i=0

Pk−i p(γi = 1)− p0. (19)

From this, and equipped with the above assumptions, we

have the following result for γ̄ = limk→∞ p(γk = 1) =
limk→∞ IE [γk].

Theorem 1: Under Assumptions 1 and 2, the stationary

communication rate is

γ̄ = (1 + S)
−1

(20)

with S :=
∑∞

k=1 Pk.

Proof: We shall show that γ̄ = 1 −
∑∞

i=1 Piγ̄ from

which the original statement follows trivially. We show this

by proving

∀ǫ > 0 ∃N=N(ǫ) : ∀k > N,

∣
∣
∣
∣
∣
1−

k∑

i=1

Piγ̄− γ̄

∣
∣
∣
∣
∣
< ǫ. (21)

From (29), we have that Pk < Zk. With the same

reasoning, we see that p0 := p(γk = 0, . . . , γ0 = 0) ≤ Zk+1.

By Assumption 1, the limit of p(γk = 1) for k → ∞ exists;

therefore,

∀ǫγ > 0 ∃Nγ=Nγ(ǫγ) : ∀k > Nγ , |p(γk = 1)− γ̄| < ǫγ .

We set ǫγ := 1
4ǫ(1 − Z), and define εi := γ̄ − p(γi = 1),

for which holds that |εi| < ǫγ for i > Nγ . Also, we define

ε̄ as the maximum absolute value over the finite set of εi,
i ≤ Nγ , i.e. ε̄ := max{|ε0|, |ε1|, . . . , |εNγ

|}.

Rewriting the expression in (21) yields
∣
∣
∣
∣
∣
1−

k∑

i=1

Piγ̄ − γ̄

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
1−

k∑

i=1

Pi (p(γk−i = 1) + εk−i)− p0 + p0 − γ̄

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
1−

k−1∑

i=0

Pk−ip(γi = 1)− p0 − γ̄

∣
∣
∣
∣
∣
+ |p0|

+

∣
∣
∣
∣
∣
∣

k−Nγ−1
∑

i=1

Piεk−i

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

k∑

i=k−Nγ

Piεk−i

∣
∣
∣
∣
∣
∣

. (22)

Next, we bound each of the four summands in (22) for

sufficiently large k. For the first term, we can use (19),
∣
∣
∣
∣
∣
1−

k−1∑

i=0

Pk−ip(γi = 1)− p0 − γ̄

∣
∣
∣
∣
∣

= |p(γk = 1)− γ̄| < ǫγ <
1

4
ǫ

(23)

which holds for k > N1 := Nγ . For the second term, we

use p0 ≤ Zk. The condition Zk< 1
4ǫ is satisfied trivially for

Z = 0. For Z > 0, the statement holds for all k > N2 with

N2 := log( 14ǫ)/ log(Z). For the third term in (22), we use

the fact that |εi| < ǫγ for i > N1 = Nγ ,
∣
∣
∣
∣
∣
∣

k−Nγ−1
∑

i=1

Piεk−i

∣
∣
∣
∣
∣
∣

≤

k−Nγ−1
∑

i=1

Pi |εk−i| ≤ ǫγ

k−Nγ−1
∑

i=1

Pi

≤ ǫγ

k−Nγ−1
∑

i=1

Zi ≤ ǫγ
1

1−Z
=

1

4
ǫ.

(24)

Finally, for the fourth term, we can use ε̄ as defined above

to obtain
∣
∣
∣
∣
∣
∣

k∑

i=k−Nγ

Piεk−i

∣
∣
∣
∣
∣
∣

≤

k∑

i=k−Nγ

Pi |εk−i|

≤ ε̄
k∑

i=k−Nγ

Pi ≤ ε̄Zk−Nγ

Nγ∑

i=0

Zi

≤ ε̄Zk−Nγ
1

1−Z
.

(25)

Since Z < 1, one can find N3 such that (25) is bounded by
1
4ǫ for any k ≥ N3. The statement is trivially satisfied for

Z = 0. For Z > 0, such N3 is given by

N3 =
log
(
1
4ǫ
)
− log ε̄+ log (1−Z)

logZ
+Nγ (26)

In conclusion, we can set N = max {N1, N2, N3}, and (21)

follows from (22) and the previously established bounds.

While Theorem 1 provides a closed-form expression for

the sought stationary average communication rate γ̄, it is im-

practical for direct computation as it involves the infinite sum

over the probabilities Pk = p(γk = 0, . . . , γ1 = 0| γ0 = 1).
We next address approximations of Pk that shall yield

an expression for the communication rate in terms of the

problem parameters.



B. Approximations

The probability density Pk characterizes the probability

of not communicating for k consecutive time steps after

communicating at time 0. It can be computed by evaluating

an mk-dimensional integral

Pk = p( |ek| < δ, . . . , |e1| < δ| γ0 = 1)

=

∫

χk

f (e1:k| γ0 = 1) de1:k

= Zk
0

∫

χk

exp
(

−
1

2
eT
1:kΛ1:ke1:k

)

de1:k

(27)

where Λ1:k = Σ−1
1:k is the precision, and Zk

0 denotes the

normalization factor of the normal distribution with

Z0 =
(
2π
∣
∣(CPsC

T +R)
1

2

∣
∣
)− 1

2 . (28)

The derivation of the normalization factor is given in [23].

From (27), we can find an upper bound for Pk by

Pk ≤ Zk
0

∫

χk

1 de1:k = Zk
0 (2δ)

mk = Zk
(29)

where we introduced Z := (2δ)mZ0.

In the following derivations, we assume the tuning param-

eter δ to satisfy the following constraint.

Assumption 3: Z = (2δ)mZ0 < 1.

Assumption 3 is required to rigorously establish the mathe-

matical details below. However, we found that the obtained

communication rates often also hold approximately even if

Assumption 3 is violated (see later discussion in Sec. VI).

Since the integral of the normal distribution over the hy-

percube χk cannot be computed analytically, we approximate

it by means of a Taylor series expansion for the exponential

function, of which we shall consider a finite number of terms

in the following. We thus obtain from (27)

Pk = Zk
0

∫

χk

exp

(

−
1

2

∑

(i,j)∈I(k)

eT
iΛi,jej

)

de1:k

= Zk
0

∫

χk

∞∑

l=0

1

l!

(

−
1

2

∑

(i,j)∈I(k)

eT
iΛi,jej

)l

de1:k (30)

where I(k) := {1, . . . , k}×{1, . . . , k} is the index set of all

possible combinations of pairs ei and ej , and Λi,j denotes

the (i, j)-block of Λ1:k when partitioned into k × k blocks

of size m ×m. We use P̃N
k to denote an approximation to

Pk in which only the first L+ 1 terms in (30) are kept

P̃N
k := Zk

0

∫

χk

N∑

l=0

1

l!

(

−
1

2

∑

(i,j)∈I(k)

eT
iΛi,jej

)l

de1:k. (31)

C. Zero-order approximation

We first consider the zero-order approximation P̃0
k to Pk,

P̃0
k = Zk

0

∫

χk

1 de1:k = Zk
0 (2δ)

mk
= Zk. (32)

Using the approximation Pk ≈ P̃0
k in Theorem 1, leads to

the geometric series

γ̄−1 = 1 + S = 1 +
∞∑

k=1

Zk = (1−Z)
−1

. (33)

Under Assumption 3, we can solve the geometric series

to yield a closed form solution for γ̄. Thus, we obtain

approximate communication rate

γ̄ = 1−Z = 1− (2δ)mZ0 (34)

which holds for small δ satisfying Assumption 3, and with

Z0 as in (28). In Sec. VI, we investigate how well this

approximation holds in practice for a robotic system.

D. Higher-order approximations

Following the previous procedure, also higher-order ap-

proximations can be obtained. We cannot give the full

expressions due to space constraints, but we provide an

outline here, how such higher-order approximations can be

obtained.

First, we approximate the Taylor series in (30) by a finite

sum with N+1 terms; that is, we approximate Pk ≈ P̃N
k . As

the accuracy of the series approximation generally increases

with higher-order terms, also P̃N
k will improve for larger N .

Furthermore, we approximate the infinite sum in (20) by

a finite sum of length M ; that is, S =
∑∞

i=1 Pi ≈
∑M

i=1 Pi.

Since Pi is bounded by Zi with Z < 1 by Assumption 3, the

impact of missing terms Pi for i > M decays exponentially.

Combining both approximation, we obtain the approxima-

tion

S =

∞∑

i=1

Pi ≈

M∑

i=1

P̃N
i =: S̃ (35)

which yields the approximate communication rate by (20).

Ideally, we would like to have a closed-form expression for

the approximation S̃ in (35). As P̃N
k depends on the precision

Λ1:k, finding a closed-form expression for the elements of

the precision is essential. Even though the elements of the

covariance Σ1:k can be expressed in terms of the system

parameters (13), obtaining an expression for the inverse is not

straightforward. Using Assumption 1, however, it is indeed

possible to find a closed-form expression for Λ1:k in terms

of the system parameters (see [23]).

VI. ROBOT EXPERIMENTS

This section presents experimental results of applying the

event-based framework (Fig. 1) to estimating the angular

position and velocity of a one-dimensional robot link. In

particular, we compare the communication rates derived in

Sec. V to the empirical rates in order to evaluate how well

the theoretical analysis and assumptions hold in practice.



A. Robot model

The experiment is performed on a rotatory wrist joint of a

KUKA lightweight robot LWR2. The idealized linear system

dynamics in continuous time can be described in state space

representation as

ẋ = Acx+Bcτ (36)

with

x =

[
θ

θ̇

]

, Ac =

[
0 1
0 −d

I

]

, Bc =

[
0
1
I

]

. (37)

where d = 0.2114 kg m2/s, I = 0.1641 kg m2. A discrete-

time version (1) is obtained by exact discretization with sam-

pling time ∆t = 0.001 s and assuming zero-order hold at the

input. Obviously, the linear model (36) is an approximation

of the true robot dynamics, which, for instance, also involve

nonlinear friction.

B. Identification of model parameters

The parameters of the dynamics model (36), as well as

process and measurement noise are identified from data.

Dynamics: We perform a straightforward closed-loop

identification procedure to obtain the dynamics parameters I
and d. A sine trajectory with a frequency of f = 0.24 Hz

is applied as desired trajectory θdes
k on the robot joint. The

robot uses an internal PID controller to produce torques τk
for tracking θdes

k . During the identification phase, the torques

produced by the controller τk and the angular position θk
of the robot are recorded. From the angular position, the

corresponding velocity and acceleration are recovered by

numerical differentiation and noncausal low-pass filtering.

The time series τk, θk, θ̇k and θ̈k are used to determine the

parameters for (36) using least-squares regression.

Measurement noise R: The angular position θk is

measures by a digital encoder, and we consider the encoder

quantization as measurement noise. The quantization level

∆ = 1.73× 10−6 rad is determined from a sensor readings

at standstill. Assuming a uniform distribution over the quan-

tization interval [−∆
2 ,

∆
2 ], the variance of the sensor noise is

computed as R = 1
12∆

2 = 2.49× 10−13.

Process noise Q: The process noise vk is used to

describe the uncertainty that is not explained by the robot

model (1). Solving for vk yields

vk = xk+1 −Axk −Buk. (38)

This equation is used to estimate vk from recorded data

during a tracking task as previously described. To avoid

overfitting, a different sine trajectory with a frequency of

0.22 Hz is used. We approximate the covariance Q by the

computed sample covariance of obtained time series data for

vk,

Q =

[
4.82× 10−10 8.37× 10−9

8.37× 10−9 5.64× 10−6

]

. (39)

To avoid accuracy problems, we rely on the library [24],

which allows for numeric resolution with arbitrary floating-

point precision.
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Fig. 3. Event-based estimation for one-link robot experiment with δ =
2×10−5. TOP: angular position. MIDDLE: Triggering signal (6) (blue) and
threshold δ (orange). BOTTOM: Communication rate computed as moving
horizon average with windows of 0.01 s (blue) and πf (orange).

C. Results

We implement the event-based estimation architecture

from Sec. II in order to estimate the state (θk, θ̇k) from

the encoder measurements during a trajectory tracking ex-

periment. Again, we perform sine tracking with a slightly

altered frequency of 0.20Hz. Corresponding to the remote

estimation architecture in Fig. 1, the estimates are not used

in feedback and the input torque τk is available for both

estimation and prediction. For an experiment with trigger

threshold δ = 2 × 10−5, the resulting trajectories of the

position θk, the triggering signal (6), and the communication

rate are shown in Fig. 3. As can be seen from the com-

munication rate computed with a small averaging window

(bottom, blue), the communication rate does not converge to

a steady-state value in this experiment. Instead, it exhibits

the same periodicity as the angle trajectory, which alludes

to non-stationary conditions and, in particular, position de-

pendent system properties such as nonlinear friction. For a

larger window of half a signal period (orange), however, the

position dependent irregularities mostly average out.

Table I shows the empirical communication rates when

averaged over the length of the experiment (15s), for the ex-

periment in Fig. 3, as well as other choices of δ (1st column).

The empirical rates are compared to the steady-state expected

communication rates γ̄ obtained from the analytical results in

Sec. V. In particular, the 0th-order approximation (34) (4th

column), and a 9th-order approximation according to Sec. V-

D (3rd column) are shown. Note that for δ = 4 × 10−5,

the 0th-order approximation could not be computed since

Assumption 3 is not satisfied, and the series in (33) diverges.

Despite Assumption 3 not being satisfied, we still applied the

higher order approximation, which gave reasonable results.

From the results in Table I, it can be seen that the

communication rate decreases when increasing the threshold



TABLE I

EXPERIMENTAL AND ANALYTIC COMMUNICATION RATES

δ Experimental result 9th order 0th order

1× 10−5 69.6% 66.5% 64.9%
2× 10−5 49.5% 41.8% 31.3%
3× 10−5 36.2% 28.1% 10.1%
4× 10−5 27.6% 19.8% –
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Fig. 4. Comparison of the probability PL from 0th- and 9th-order
approximations with experimental data (red), for δ = 1 × 10−5 (top) and
δ = 2× 10−5 (bottom).

δ, as expected. Furthermore, the quality of the approximation

decreases with increasing δ (cf. discussion in Sec. V-D).

Generally, the analytic rates are good approximations of the

empirical ones, despite Assumption 1 not being satisfied.

Presumably, this is because of the averaging effect over

multiple periods as discussed above.

The probabilities PL (18) are essential for the analytic

computation of γ̄. Figure 4 compares PL obtained from the

0th- and 9th-order approximations with the empirical results

obtained from the experiment.

VII. CONCLUSION

In this paper, we computed the expected communication

rate in a typical event-based state estimation scenario for

a linear Gaussian process model. The derived expressions

for the transient and steady-state rates are validated against

experiments on a one-link robot arm.

While we assumed convergence to steady-state communi-

cation rates in the theoretical analysis, the robot experiments

displayed rates correlated with the periodic trajectory. When

considering the communication rate averaged over one pe-

riod, however, we found the theoretical results to match well

with the empirical ones. Extending the theoretical analysis

to this case is an interesting task for future work.

In Sec. V-D, a general approximation of the communica-

tion rate involving higher order terms was presented. Both

errors induced by using finite M (terms in the summation S)

and finite N (terms in the Taylor series of the exponential)

can in principle be bounded using standard techniques.

Rigorous deviation of an error bound as a function of M
and N is an another task for future work.
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