Header logo is de


2014


Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds
Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds

Schoenbein, M., Geiger, A.

International Conference on Intelligent Robots and Systems, pages: 716 - 723, IEEE, Chicago, IL, USA, IEEE/RSJ International Conference on Intelligent Robots and System, October 2014 (conference)

Abstract
This paper proposes a method for high-quality omnidirectional 3D reconstruction of augmented Manhattan worlds from catadioptric stereo video sequences. In contrast to existing works we do not rely on constructing virtual perspective views, but instead propose to optimize depth jointly in a unified omnidirectional space. Furthermore, we show that plane-based prior models can be applied even though planes in 3D do not project to planes in the omnidirectional domain. Towards this goal, we propose an omnidirectional slanted-plane Markov random field model which relies on plane hypotheses extracted using a novel voting scheme for 3D planes in omnidirectional space. To quantitatively evaluate our method we introduce a dataset which we have captured using our autonomous driving platform AnnieWAY which we equipped with two horizontally aligned catadioptric cameras and a Velodyne HDL-64E laser scanner for precise ground truth depth measurements. As evidenced by our experiments, the proposed method clearly benefits from the unified view and significantly outperforms existing stereo matching techniques both quantitatively and qualitatively. Furthermore, our method is able to reduce noise and the obtained depth maps can be represented very compactly by a small number of image segments and plane parameters.

avg ps

pdf DOI [BibTex]

2014


pdf DOI [BibTex]


Optimizing Average Precision using Weakly Supervised Data
Optimizing Average Precision using Weakly Supervised Data

Behl, A., Jawahar, C. V., Kumar, M. P.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2014, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2014 (conference)

avg

[BibTex]

[BibTex]


Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo
Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo

Roser, M., Dunbabin, M., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 3840 - 3847 , Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows real-time implementation onboard an Autonomous Underwater Vehicles for improved navigation and obstacle avoidance performance.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Calibrating and Centering Quasi-Central Catadioptric Cameras
Calibrating and Centering Quasi-Central Catadioptric Cameras

Schoenbein, M., Strauss, T., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 4443 - 4450, Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Non-central catadioptric models are able to cope with irregular camera setups and inaccuracies in the manufacturing process but are computationally demanding and thus not suitable for robotic applications. On the other hand, calibrating a quasi-central (almost central) system with a central model introduces errors due to a wrong relationship between the viewing ray orientations and the pixels on the image sensor. In this paper, we propose a central approximation to quasi-central catadioptric camera systems that is both accurate and efficient. We observe that the distance to points in 3D is typically large compared to deviations from the single viewpoint. Thus, we first calibrate the system using a state-of-the-art non-central camera model. Next, we show that by remapping the observations we are able to match the orientation of the viewing rays of a much simpler single viewpoint model with the true ray orientations. While our approximation is general and applicable to all quasi-central camera systems, we focus on one of the most common cases in practice: hypercatadioptric cameras. We compare our model to a variety of baselines in synthetic and real localization and motion estimation experiments. We show that by using the proposed model we are able to achieve near non-central accuracy while obtaining speed-ups of more than three orders of magnitude compared to state-of-the-art non-central models.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Learning to Rank using High-Order Information
Learning to Rank using High-Order Information

Dokania, P. K., Behl, A., Jawahar, C. V., Kumar, M. P.

International Conference on Computer Vision, 2014 (conference)

avg

[BibTex]

[BibTex]


Automatic Generation of Reduced CPG Control Networks for Locomotion of Arbitrary Modular Robot Structures
Automatic Generation of Reduced CPG Control Networks for Locomotion of Arbitrary Modular Robot Structures

Bonardi, S., Vespignani, M., Möckel, R., Van den Kieboom, J., Pouya, S., Spröwitz, A., Ijspeert, A.

In Proceedings of Robotics: Science and Systems, University of California, Barkeley, 2014 (inproceedings)

Abstract
The design of efficient locomotion controllers for arbitrary structures of reconfigurable modular robots is challenging because the morphology of the structure can change dynamically during the completion of a task. In this paper, we propose a new method to automatically generate reduced Central Pattern Generator (CPG) networks for locomotion control based on the detection of bio-inspired sub-structures, like body and limbs, and articulation joints inside the robotic structure. We demonstrate how that information, coupled with the potential symmetries in the structure, can be used to speed up the optimization of the gaits and investigate its impact on the solution quality (i.e. the velocity of the robotic structure and the potential internal collisions between robotic modules). We tested our approach on three simulated structures and observed that the reduced network topologies in the first iterations of the optimization process performed significantly better than the fully open ones.

dlg

DOI [BibTex]

DOI [BibTex]

2012


Development of a Minimalistic Pneumatic Quadruped Robot for Fast Locomotion
Development of a Minimalistic Pneumatic Quadruped Robot for Fast Locomotion

Narioka, K., Rosendo, A., Spröwitz, A., Hosoda, K.

In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pages: 307-311, IEEE, Guangzhou, 2012 (inproceedings)

Abstract
In this paper, we describe the development of the quadruped robot ”Ken” with the minimalistic and lightweight body design for achieving fast locomotion. We use McKibben pneumatic artificial muscles as actuators, providing high frequency and wide stride motion of limbs, also avoiding problems with overheating. We conducted a preliminary experiment, finding out that the robot can swing its limb over 7.5 Hz without amplitude reduction, nor heat problems. Moreover, the robot realized a several steps of bouncing gait by using simple CPG-based open loop controller, indicating that the robot can generate enough torque to kick the ground and limb contraction to avoid stumbling.

dlg

DOI [BibTex]

2012


DOI [BibTex]


Locomotion through Reconfiguration based on Motor Primitives for Roombots Self-Reconfigurable Modular Robots
Locomotion through Reconfiguration based on Motor Primitives for Roombots Self-Reconfigurable Modular Robots

Bonardi, S., Moeckel, R., Spröwitz, A., Vespignani, M., Ijspeert, A. J.

In Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on, pages: 1-6, 2012 (inproceedings)

Abstract
We present the hardware and reconfiguration experiments for an autonomous self-reconfigurable modular robot called Roombots (RB). RB were designed to form the basis for self-reconfigurable furniture. Each RB module contains three degrees of freedom that have been carefully selected to allow a single module to reach any position on a 2-dimensional grid and to overcome concave corners in a 3-dimensional grid. For the first time we demonstrate locomotion capabilities of single RB modules through reconfiguration with real hardware. The locomotion through reconfiguration is controlled by a planner combining the well-known D* algorithm and composed motor primitives. The novelty of our approach is the use of an online running hierarchical planner closely linked to the real hardware.

dlg

link (url) [BibTex]

link (url) [BibTex]

2010


Graph signature for self-reconfiguration planning of modules with symmetry
Graph signature for self-reconfiguration planning of modules with symmetry

Asadpour, M., Ashtiani, M. H. Z., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5295-5300, IEEE, St. Louis, MO, 2010 (inproceedings)

Abstract
In our previous works we had developed a framework for self-reconfiguration planning based on graph signature and graph edit-distance. The graph signature is a fast isomorphism test between different configurations and the graph edit-distance is a similarity metric. But the algorithm is not suitable for modules with symmetry. In this paper we improve the algorithm in order to deal with symmetric modules. Also, we present a new heuristic function to guide the search strategy by penalizing the solutions with more number of actions. The simulation results show the new algorithm not only deals with symmetric modules successfully but also finds better solutions in a shorter time.

dlg

DOI [BibTex]

2010


DOI [BibTex]


Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules
Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1126-1132, IEEE, Taipeh, 2010 (inproceedings)

Abstract
This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots (RB) metamodules. We explore how reconfiguration by loco- motion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planner.

dlg

DOI [BibTex]

DOI [BibTex]


Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question
Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question

Pouya, S., van den Kieboom, J., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 514-520, IEEE, Taipei, 2010 (inproceedings)

Abstract
Modular robots offer the possibility to design robots with a high diversity of shapes and functionalities. This nice feature also brings an important challenge: namely how to design efficient locomotion gaits for arbitrary robot structures with many degrees of freedom. In this paper, we present a framework that allows one to explore and identify highly different gaits for a given arbitrary- shaped modular robot. We use simulated robots made of several Roombots modules that have three rotational joints each. These modules have the interesting feature that they can produce both oscillatory movements (i.e. periodic movements around a rest position) and rotational movements (i.e. with continuously increasing angle), leading to very rich locomotion patterns. Here we ask ourselves which types of movements —purely oscillatory, purely rotational, or a combination of both— lead to the fastest gaits. To address this question we designed a control architecture based on a distributed system of coupled phase oscillators that can produce synchronized rotations and oscillations in many degrees of freedom. We also designed a specific optimization algorithm that can automatically design hybrid controllers, i.e. controllers that use oscillations in some joints and rotations in others, for fast gaits. The proposed framework is verified by multiple simulations for several robot morphologies. The results show that (i) the question whether it is better to oscillate or to rotate depends on the morphology of the robot, and that in general it is best to do both, (ii) the optimization framework can successfully generate hybrid controllers that outperform purely oscillatory and purely rotational ones, and (iii) the resulting gaits are fast, innovative, and would have been hard to design by hand.

dlg

DOI [BibTex]

DOI [BibTex]

2009


Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture
Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture

Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), pages: 4259-4264, IEEE, Kobe, 2009 (inproceedings)

Abstract
We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures.

dlg

DOI [BibTex]

2009


DOI [BibTex]

2004


Simple and low-cost compliant leg-foot system
Simple and low-cost compliant leg-foot system

Meyer, F., Spröwitz, A., Lungarella, M., Berthouze, L.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), 1, pages: 515-520, IEEE, Sendai, Japan, 2004 (inproceedings)

Abstract
We present the design of a simple and low- cost humanoid leg-foot system featuring compliant joints and springy feet. The mechanical compliance of the individual joints can be adjusted by means of visco-elastic material, or metal. To explore some of the relevant characteristics of the proposed system, we performed a series of experiments in which the leg was dropped from a fixed height. Combinations of different materials in the joints (silicone rubber, latex, and brass) as well as a rigid or a compliant foot were used. Additional data were obtained through of a Lagrangian analysis of the leg-foot system. Our analyses show that compliant joints not only reduce impactive forces, but also induce smoother joint trajectories. Further, by employing a compliant foot, a higher energy efficiency for the movement is achieved.

dlg

DOI [BibTex]

2004


DOI [BibTex]