Header logo is de


2011


no image
Human-Inspired Robotic Grasp Control with Tactile Sensing

Romano, J. M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K. J.

IEEE Transactions on Robotics, 27(6):1067-1079, December 2011 (article)

hi

[BibTex]

2011


[BibTex]


no image
Tool Contact Acceleration Feedback for Telerobotic Surgery

McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J., Lilavois, M., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 4(3):210-220, July 2011 (article)

hi

[BibTex]

[BibTex]


no image
VerroTouch: Vibrotactile Feedback for Robotic Minimally Invasive Surgery

McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J., Lilavois, M., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

Journal of Urology, 185(4, Supplement):e373, May 2011, Poster presentation given by McMahan at the Annual Meeting of the American Urological Association in Washington, D.C., USA (article)

hi

[BibTex]

[BibTex]


no image
Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives

Degallier, S., Righetti, L., Gay, S., Ijspeert, A.

Autonomous Robots, 31(2-3):155-181, October 2011 (article)

Abstract
Vertebrates are able to quickly adapt to new environments in a very robust, seemingly effortless way. To explain both this adaptivity and robustness, a very promising perspective in neurosciences is the modular approach to movement generation: Movements results from combinations of a finite set of stable motor primitives organized at the spinal level. In this article we apply this concept of modular generation of movements to the control of robots with a high number of degrees of freedom, an issue that is challenging notably because planning complex, multidimensional trajectories in time-varying environments is a laborious and costly process. We thus propose to decrease the complexity of the planning phase through the use of a combination of discrete and rhythmic motor primitives, leading to the decoupling of the planning phase (i.e. the choice of behavior) and the actual trajectory generation. Such implementation eases the control of, and the switch between, different behaviors by reducing the dimensionality of the high-level commands. Moreover, since the motor primitives are generated by dynamical systems, the trajectories can be smoothly modulated, either by high-level commands to change the current behavior or by sensory feedback information to adapt to environmental constraints. In order to show the generality of our approach, we apply the framework to interactive drumming and infant crawling in a humanoid robot. These experiments illustrate the simplicity of the control architecture in terms of planning, the integration of different types of feedback (vision and contact) and the capacity of autonomously switching between different behaviors (crawling and simple reaching).

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2010


no image
Lack of Discriminatory Function for Endoscopy Skills on a Computer-based Simulator

Kim, S., Spencer, G., Makar, G., Ahmad, N., Jaffe, D., Ginsberg, G., Kuchenbecker, K. J., Kochman, M.

Surgical Endoscopy, 24(12):3008-3015, December 2010 (article)

hi

[BibTex]

2010


[BibTex]


no image
Identifying the Role of Proprioception in Upper-Limb Prosthesis Control: Studies on Targeted Motion

Blank, A., Okamura, A. M., Kuchenbecker, K. J.

ACM Transactions on Applied Perception, 7(3):1-23, June 2010 (article)

hi

[BibTex]

[BibTex]


Roombots: Reconfigurable Robots for Adaptive Furniture
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

DOI [BibTex]

2009


no image
Adaptive Frequency Oscillators and Applications

Righetti, L., Buchli, J., Ijspeert, A.

The Open Cybernetics \& Systemics Journal, 3, pages: 64-69, 2009 (article)

Abstract
In this contribution we present a generic mechanism to transform an oscillator into an adaptive frequency oscillator, which can then dynamically adapt its parameters to learn the frequency of any periodic driving signal. Adaptation is done in a dynamic way: it is part of the dynamical system and not an offline process. This mechanism goes beyond entrainment since it works for any initial frequencies and the learned frequency stays encoded in the system even if the driving signal disappears. Interestingly, this mechanism can easily be applied to a large class of oscillators from harmonic oscillators to relaxation types and strange attractors. Several practical applications of this mechanism are then presented, ranging from adaptive control of compliant robots to frequency analysis of signals and construction of limit cycles of arbitrary shape.

mg

link (url) [BibTex]

2009


link (url) [BibTex]