Header logo is de


2012


no image
Burn-in, bias, and the rationality of anchoring

Lieder, F., Griffiths, T. L., Goodman, N. D.

Advances in Neural Information Processing Systems 25, pages: 2699-2707, 2012 (article)

Abstract
Bayesian inference provides a unifying framework for addressing problems in machine learning, artificial intelligence, and robotics, as well as the problems facing the human mind. Unfortunately, exact Bayesian inference is intractable in all but the simplest models. Therefore minds and machines have to approximate Bayesian inference. Approximate inference algorithms can achieve a wide range of time-accuracy tradeoffs, but what is the optimal tradeoff? We investigate time-accuracy tradeoffs using the Metropolis-Hastings algorithm as a metaphor for the mind's inference algorithm(s). We find that reasonably accurate decisions are possible long before the Markov chain has converged to the posterior distribution, i.e. during the period known as burn-in. Therefore the strategy that is optimal subject to the mind's bounded processing speed and opportunity costs may perform so few iterations that the resulting samples are biased towards the initial value. The resulting cognitive process model provides a rational basis for the anchoring-and-adjustment heuristic. The model's quantitative predictions are tested against published data on anchoring in numerical estimation tasks. Our theoretical and empirical results suggest that the anchoring bias is consistent with approximate Bayesian inference.

re

link (url) [BibTex]

2012


link (url) [BibTex]

2010


Roombots: Reconfigurable Robots for Adaptive Furniture
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

2010


DOI [BibTex]