Header logo is de


2011


no image
Design and application of a wire-driven bidirectional telescopic mechanism for workspace expansion with a focus on shipbuilding tasks

Lee, D., Chang, D., Shin, Y., Son, D., Kim, T., Lee, K., Kim, J.

Advanced Robotics, 25, 2011 (article)

pi

[BibTex]

2011


[BibTex]


no image
Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives

Murphy, M. P., Kute, C., Mengüç, Y., Sitti, M.

The International Journal of Robotics Research, 30(1):118-133, SAGE Publications Sage UK: London, England, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Automated 2-D nanoparticle manipulation using atomic force microscopy

Onal, C. D., Ozcan, O., Sitti, M.

IEEE Transactions on Nanotechnology, 10(3):472-481, IEEE, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Biaxial mechanical modeling of the small intestine

Bellini, C., Glass, P., Sitti, M., Di Martino, E. S.

Journal of the mechanical behavior of biomedical materials, 4(8):1727-1740, Elsevier, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Aqueous droplet manipulation by optically induced Marangoni circulation

Hu, W., Ohta, A. T.

Microfluidics and nanofluidics, 11(3):307-316, Springer-Verlag, 2011 (article)

pi

[BibTex]

[BibTex]


no image
An optically controlled 3D cell culturing system

Ishii, K. S., Hu, W., Namekar, S. A., Ohta, A. T.

Advances in optoelectronics, 2011, Hindawi, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems

Diller, E., Pawashe, C., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 30(14):1667-1680, SAGE Publications Sage UK: London, England, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Modeling of stochastic motion of bacteria propelled spherical microbeads

Arabagi, V., Behkam, B., Cheung, E., Sitti, M.

Journal of Applied Physics, 109(11):114702, AIP, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

Aksak, B., Hui, C., Sitti, M.

Journal of The Royal Society Interface, 8(61):1166-1175, The Royal Society, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Enhancing adhesion of biologically inspired polymer microfibers with a viscous oil coating

Cheung, E., Sitti, M.

The Journal of Adhesion, 87(6):547-557, Taylor & Francis Group, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Piezoelectric polymer fiber arrays for tactile sensing applications

Sümer, B., Aksak, B., Şsahin, K., Chuengsatiansup, K., Sitti, M.

Sensor Letters, 9(2):457-463, American Scientific Publishers, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control methodologies for a heterogeneous group of untethered magnetic micro-robots

Floyd, S., Diller, E., Pawashe, C., Sitti, M.

The International Journal of Robotics Research, 30(13):1553-1565, SAGE Publications, 2011 (article)

pi

[BibTex]

[BibTex]

2010


Roombots: Reconfigurable Robots for Adaptive Furniture
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

2010


DOI [BibTex]


no image
Gait planning based on kinematics for a quadruped gecko model with redundancy

Son, D., Jeon, D., Nam, W. C., Chang, D., Seo, T., Kim, J.

Robotics and Autonomous Systems, 58, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Flat dry elastomer adhesives as attachment materials for climbing robots

Unver, O., Sitti, M.

IEEE transactions on robotics, 26(1):131-141, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
An experimental analysis of elliptical adhesive contact

Sümer, B., Onal, C. D., Aksak, B., Sitti, M.

Journal of Applied Physics, 107(11):113512, AIP, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Note: Aligned deposition and modal characterization of micron and submicron poly (methyl methacyrlate) fiber cantilevers

Nain, A. S., Filiz, S., Burak Ozdoganlar, O., Sitti, M., Amon, C.

Review of Scientific Instruments, 81(1):016102, AIP, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning

Chung, H., Glass, P., Pothen, J. M., Sitti, M., Washburn, N. R.

Biomacromolecules, 12(2):342-347, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2009


no image
Magnetic mobile micro-robots

Pawashe, C., Floyd, S., Sitti, M.

7eme Journees Nationales de la Recherche en Robotique, 2009 (article)

pi

[BibTex]

2009


[BibTex]


no image
Gecko-Inspired Directional and Controllable Adhesion

Murphy, M. P., Aksak, B., Sitti, M.

Small, 5(2):170-175, WILEY-VCH Verlag, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Multiple magnetic microrobot control using electrostatic anchoring

Pawashe, C., Floyd, S., Sitti, M.

Applied Physics Letters, 94(16):164108, AIP, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives

Kim, S., Cheung, E., Sitti, M.

Langmuir, 25(13):7196-7199, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Robot ceiling climbers harness new tricks

Marks, Paul

New Scientist, 202(2705):18-19, Reed Business Information, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Biologically-Inspired Patterned and Coated Adhesives for Medical Devices

Glass, P, Chung, H, Lee, C, Tworkoski, E, Washburn, NR, Sitti, M

Journal of Medical Devices, 3(2):027537, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Modeling and experimental characterization of an untethered magnetic micro-robot

Pawashe, C., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 28(8):1077-1094, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Towards automated nanoassembly with the atomic force microscope: A versatile drift compensation procedure

Krohs, F., Onal, C., Sitti, M., Fatikow, S.

Journal of Dynamic Systems, Measurement, and Control, 131(6):061106, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives

Murphy, M. P., Kim, S., Sitti, M.

ACS applied materials \& interfaces, 1(4):849-855, American Chemical Society, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature devices: Voyage of the microrobots

Sitti, M.

Nature, 458(7242):1121-1122, Nature Publishing Group, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers

Nain, A. S., Sitti, M., Jacobson, A., Kowalewski, T., Amon, C.

Macromolecular rapid communications, 30(16):1406-1412, WILEY-VCH Verlag, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot

Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 25(6):1332-1342, IEEE, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A scaled bilateral control system for experimental one-dimensional teleoperated nanomanipulation

Onal, C. D., Sitti, M.

The International Journal of Robotics Research, 28(4):484-497, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A Swallowable Tethered Capsule Endoscope for Diagnosing Barrett’s Esophagus

Glass, P., Sitti, M., Pennathur, A., Appasamy, R.

Gastrointestinal Endoscopy, 69(5):AB106, Mosby, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Adhesion of biologically inspired polymer microfibers on soft surfaces

Cheung, E., Sitti, M.

Langmuir, 25(12):6613-6616, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dangling chain elastomers as repeatable fibrillar adhesives

Sitti, M., Cusick, B., Aksak, B., Nese, A., Lee, H., Dong, H., Kowalewski, T., Matyjaszewski, K.

ACS applied materials \& interfaces, 1(10):2277-2287, American Chemical Society, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Reversible dry micro-fibrillar adhesives with thermally controllable adhesion

Kim, S., Sitti, M., Xie, T., Xiao, X.

Soft Matter, 5(19):3689-3693, Royal Society of Chemistry, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 25(12):6607-6612, ACS Publications, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2004


no image
E. Coli Inspired Propulsion for Swimming Microrobots

Behkam, Bahareh, Sitti, Metin

pages: 1037–1041, 2004 (article)

Abstract
Medical applications are among the most fascinating areas of microrobotics. For long, scientists have dreamed of miniature smart devices that can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases that are in their very early stages. Still a distant dream, significant progress in micro and nanotechnology brings us closer to materializing it. For such a miniature device to be injected into the body, it has to be 800 μm or smaller in diameter. Miniature, safe and energy efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. Scaling the macroscale natation mechanisms to micro/nano length scales is unfeasible. It has been estimated that a vibrating-fin driven swimming robot shorter than 6 mm can not overcome the viscous drag forces in water. In this paper, the authors propose a new type of propulsion inspired by the motility mechanism of bacteria with peritrichous flagellation, such as Escherichia coli, Salmonella typhimurium and Serratia marcescens. The perfomance of the propulsive mechanism is estimated by modeling the dynamics of the motion. The motion of the moving organelle is simulated and key parameters such as velocity, distribution of force and power requirments for different configurations of the tail are determined theoretically. In order to validate the theoretical result, a scaled up model of the swimming robot is fabricated and characterized in silicone oil using the Buckingham PI theorem for scaling. The results are compared with the theoretically computed values. These robots are intended to swim in stagnation/low velocity biofluid and reach currently inaccessible areas of the human body for disease inspection and possibly treatment. Potential target regions to use these robots include eyeball cavity, cerebrospinal fluid and the urinary system.

pi

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
Atomic force microscope probe based controlled pushing for nanotribological characterization

Sitti, M.

IEEE/ASME Transactions on mechatronics, 9(2):343-349, IEEE, 2004 (article)

pi

[BibTex]

[BibTex]

2003


no image
Synthetic gecko foot-hair micro/nano-structures as dry adhesives

Sitti, M., Fearing, R. S.

Journal of adhesion science and technology, 17(8):1055-1073, Taylor & Francis Group, 2003 (article)

pi

Project Page [BibTex]

2003


Project Page [BibTex]


no image
Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments

Sitti, M., Hashimoto, H.

IEEE/ASME transactions on mechatronics, 8(2):287-298, IEEE, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Scaled teleoperation system for nano-scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

Advanced Robotics, 17(3):275-291, Taylor & Francis Group, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Atomic force microscope probe based controlled pushing for nano-tribological characterization

Sitti, M.

IEEE/ASME Transactions on Mechatronics, 8(3), 2003 (article)

pi

[BibTex]


no image
Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves

Campolo, D., Sitti, M., Fearing, R. S.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 50(3):237-244, IEEE, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

IEEE/ASME transactions on mechatronics, 8(1):26-36, IEEE, 2003 (article)

pi

[BibTex]