Header logo is de



no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), June 2020 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

arXiv [BibTex]


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


no image
Computationally Tractable Riemannian Manifolds for Graph Embeddings

Cruceru, C., Becigneul, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Practical Accelerated Optimization on Riemannian Manifolds

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

DOI [BibTex]

DOI [BibTex]


Differentiation of blackbox combinatorial solvers
Differentiation of blackbox combinatorial solvers

Vlastelica, M., Paulus, A., Musil, V., Martius, G., Rolı́nek, M.

In International Conference on Learning Representations, ICLR’20, 2020 (incollection)

al

link (url) [BibTex]

link (url) [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

Automatica, 2020 (article) Accepted

ics

arXiv PDF Project Page [BibTex]


Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

Abstract
Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.

am ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]

2014


no image
Wenn es was zu sagen gibt

(Klaus Tschira Award 2014 in Computer Science)

Trimpe, S.

Bild der Wissenschaft, pages: 20-23, November 2014, (popular science article in German) (article)

am ics

PDF Project Page [BibTex]

2014


PDF Project Page [BibTex]


no image
Modeling the polygenic architecture of complex traits

Rakitsch, Barbara

Eberhard Karls Universität Tübingen, November 2014 (phdthesis)

ei

[BibTex]

[BibTex]


Human Pose Estimation with Fields of Parts
Human Pose Estimation with Fields of Parts

Kiefel, M., Gehler, P.

In Computer Vision – ECCV 2014, LNCS 8693, pages: 331-346, Lecture Notes in Computer Science, (Editors: Fleet, David and Pajdla, Tomas and Schiele, Bernt and Tuytelaars, Tinne), Springer, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
This paper proposes a new formulation of the human pose estimation problem. We present the Fields of Parts model, a binary Conditional Random Field model designed to detect human body parts of articulated people in single images. The Fields of Parts model is inspired by the idea of Pictorial Structures, it models local appearance and joint spatial configuration of the human body. However the underlying graph structure is entirely different. The idea is simple: we model the presence and absence of a body part at every possible position, orientation, and scale in an image with a binary random variable. This results into a vast number of random variables, however, we show that approximate inference in this model is efficient. Moreover we can encode the very same appearance and spatial structure as in Pictorial Structures models. This approach allows us to combine ideas from segmentation and pose estimation into a single model. The Fields of Parts model can use evidence from the background, include local color information, and it is connected more densely than a kinematic chain structure. On the challenging Leeds Sports Poses dataset we improve over the Pictorial Structures counterpart by 5.5% in terms of Average Precision of Keypoints (APK).

ei ps

website pdf DOI Project Page [BibTex]

website pdf DOI Project Page [BibTex]


Probabilistic Progress Bars
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

website+code pdf DOI [BibTex]


no image
Seeing the Arrow of Time

Pickup, L., Zheng, P., Donglai, W., YiChang, S., Changshui, Z., Zisserman, A., Schölkopf, B., Freeman, W.

Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages: 2043-2050, IEEE, CVPR, June 2014 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


no image
Method and device for blind correction of optical aberrations in a digital image

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

International Patent Application, No. PCT/EP2012/068868, April 2014 (patent)

ei

[BibTex]


no image
A Visual Analytics Approach to Study Anatomic Covariation

Hermann, M., Schunke, A., Schultz, T., Klein, R.

In Proceedings of IEEE Pacific Visualization 2014, pages: 161-168, March 2014 (inproceedings)

Abstract
Gaining insight into anatomic covariation helps the understanding of organismic shape variability in general and is of particular interest for delimiting morphological modules. Generation of hypotheses on structural covariation is undoubtedly a highly creative process, and as such, requires an exploratory approach. In this work we propose a new local anatomic covariance tensor which enables interactive visualizations to explore covariation at different levels of detail, stimulating rapid formation and (qualitative) evaluation of hypotheses. The effectiveness of the presented approach is demonstrated on a muCT dataset of mouse mandibles for which results from the literature are successfully reproduced, while providing a more detailed representation of covariation compared to state-of-the-art methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Juggling revisited — A voxel based morphometry study with expert jugglers

Gerber, P., Schlaffke, L., Heba, S., Greenlee, M., Schultz, T., Schmidt-Wilcke, T.

NeuroImage, 95, pages: 320-325, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography

Bensch, M., Martens, S., Halder, S., Hill, J., Nijboer, F., Ramos, A., Birbaumer, N., Bodgan, M., Kotchoubey, B., Rosenstiel, W., Schölkopf, B., Gharabaghi, A.

Journal of Neural Engineering, 11(2):026006, 2014 (article)

Abstract
Objective. Patients in the completely locked-in state (CLIS), due to, for example, amyotrophic lateral sclerosis (ALS), no longer possess voluntary muscle control. Assessing attention and cognitive function in these patients during the course of the disease is a challenging but essential task for both nursing staff and physicians. Approach. An electrophysiological cognition test battery, including auditory and semantic stimuli, was applied in a late-stage ALS patient at four different time points during a six-month epidural electrocorticography (ECoG) recording period. Event-related cortical potentials (ERP), together with changes in the ECoG signal spectrum, were recorded via 128 channels that partially covered the left frontal, temporal and parietal cortex. Main results. Auditory but not semantic stimuli induced significant and reproducible ERP projecting to specific temporal and parietal cortical areas. N1/P2 responses could be detected throughout the whole study period. The highest P3 ERP was measured immediately after the patient's last communication through voluntary muscle control, which was paralleled by low theta and high gamma spectral power. Three months after the patient's last communication, i.e., in the CLIS, P3 responses could no longer be detected. At the same time, increased activity in low-frequency bands and a sharp drop of gamma spectral power were recorded. Significance. Cortical electrophysiological measures indicate at least partially intact attention and cognitive function during sparse volitional motor control for communication. Although the P3 ERP and frequency-specific changes in the ECoG spectrum may serve as indicators for CLIS, a close-meshed monitoring will be required to define the exact time point of the transition.

ei

DOI [BibTex]

DOI [BibTex]


no image
Identifiability of Gaussian Structural Equation Models with Equal Error Variances

Peters, J., Bühlman, P.

Biometrika, 101(1):219-228, 2014 (article)

ei

DOI [BibTex]


no image
Dynamical source analysis of hippocampal sharp-wave ripple episodes

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Bernstein Conference, 2014 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantifying the effect of intertrial dependence on perceptual decisions

Fründ, I., Wichmann, F., Macke, J.

Journal of Vision, 14(7):1-16, 2014 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Two numerical models designed to reproduce Saturn ring temperatures as measured by Cassini-CIRS

Altobelli, N., Lopez-Paz, D., Pilorz, S., Spilker, L., Morishima, R., Brooks, S., Leyrat, C., Deau, E., Edgington, S., Flandes, A.

Icarus, 238(0):205 - 220, 2014 (article)

ei

Web link (url) DOI [BibTex]

Web link (url) DOI [BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J., Peters, J.

97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

ei

DOI [BibTex]

DOI [BibTex]


no image
Multi-Task Feature Selection on Multiple Networks via Maximum Flows

Sugiyama, M., Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.

In Proceedings of the 2014 SIAM International Conference on Data Mining , pages: 199-207, SIAM, 2014 (inproceedings)

ei

Web PDF DOI [BibTex]

Web PDF DOI [BibTex]


no image
Quantifying Information Overload in Social Media and its Impact on Social Contagions

Gomez Rodriguez, M., Gummadi, K., Schölkopf, B.

In Proceedings of the Eighth International Conference on Weblogs and Social Media, pages: 170-179, (Editors: E. Adar, P. Resnick, M. De Choudhury, B. Hogan, and A. Oh), AAAI Press, ICWSM, 2014 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

Daneshmand, H., Gomez Rodriguez, M., Song, L., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 793-801, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Interaction Primitives for Human-Robot Cooperation Tasks

Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 2831-2837, IEEE, ICRA, 2014 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning to Predict Phases of Manipulation Tasks as Hidden States

Kroemer, O., van Hoof, H., Neumann, G., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 4009-4014, IEEE, ICRA, 2014 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Visualizing Uncertainty in HARDI Tractography Using Superquadric Streamtubes

Wiens, V., Schlaffke, L., Schmidt-Wilcke, T., Schultz, T.

In Eurographics Conference on Visualization, Short Papers, (Editors: Elmqvist, N. and Hlawitschka, M. and Kennedy, J.), EuroVis, 2014 (inproceedings)

Abstract
Standard streamtubes for the visualization of diffusion MRI data are rendered either with a circular or with an elliptic cross section whose aspect ratio indicates the relative magnitudes of the medium and minor eigenvalues. Inspired by superquadric tensor glyphs, we propose to render streamtubes with a superquadric cross section, which develops sharp edges to more clearly convey the orientation of the second and third eigenvectors where they are uniquely defined, while maintaining a circular shape when the smaller two eigenvalues are equal. As a second contribution, we apply our novel superquadric streamtubes to visualize uncertainty in the tracking direction of HARDI tractography, which we represent using a novel propagation uncertainty tensor.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Permutation-Based Kernel Conditional Independence Test

Doran, G., Muandet, K., Zhang, K., Schölkopf, B.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI2014), pages: 132-141, (Editors: Nevin L. Zhang and Jin Tian), AUAI Press Corvallis, Oregon, UAI2014, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A unifying view of representer theorems

Argyriou, A., Dinuzzo, F.

In Proceedings of the 31th International Conference on Machine Learning, 32, pages: 748-756, (Editors: Xing, E. P. and Jebera, T.), ICML, 2014 (inproceedings)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Riemannian Sparse Coding for Positive Definite Matrices

Cherian, A., Sra, S.

In 13th European Conference on Computer Vision, LNCS 8691, pages: 299-314, (Editors: Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T.), Springer, ECCV, 2014 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic ODE Solvers with Runge-Kutta Means

Schober, M., Duvenaud, D., Hennig, P.

In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Mask-Specific Inpainting with Deep Neural Networks

Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.

In Pattern Recognition (GCPR 2014), pages: 523-534, (Editors: X Jiang, J Hornegger, and R Koch), Springer, 2014, Lecture Notes in Computer Science (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]