Header logo is de


2020


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, September 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

ps

project page pdf preprint [BibTex]

2020


project page pdf preprint [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873–-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

Paper Publisher Version poster link (url) DOI [BibTex]

Paper Publisher Version poster link (url) DOI [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Effect of the soft layer thickness of magnetization reversal process of exchange-spring nanomagnet patterns

Son, K., Schütz, G., Goering, E.

{Current Applied Physics}, 20(4):477-483, Elsevier B.V., Amsterdam, 2020 (article)

mms

DOI [BibTex]


{Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination}
Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination

Guang, Y., Bykova, I., Liu, Y., Yu, G., Goering, E., Weigand, M., Gräfe, J., Kim, S. K., Zhang, J., Zhang, H., Yan, Z., Wan, C., Feng, J., Wang, X., Guo, C., Wei, H., Peng, Y., Tserkovnyak, Y., Han, X., Schütz, G.

{Nature Communications}, 11, Nature Publishing Group, London, 2020 (article)

Abstract
Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

mms

DOI [BibTex]

DOI [BibTex]


{Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications}
Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications

Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., Rodionova, V. V.

{Japanese Journal of Applied Physics}, 59(SE), IOP Publishing Ltd, Bristol, England, 2020 (article)

Abstract
Miniature magnetic sensors based on magnetoplasmonic crystals (MPlCs) exhibit high sensitivity and high spatial resolution, which can be obtained by the excitation of surface plasmon polaritons. A field dependence of surface plasmon polaritons' enhanced magneto-optical response strongly correlates with magnetic properties of MPlCs that can be tuned by changing spatial parameters, such as the period and height of diffraction gratings and thicknesses of functional layers. This work compares the magnetic properties of MPlCs based on Ni80Fe20 (permalloy) obtained from local (longitudinal magneto-optical Kerr effect) and bulk (vibrating-sample magnetometry) measurements and demonstrates an ability to control sensors' performance through changing the magnetic properties of the MPlCs. The influence of the substrate's geometry (planar or sinusoidal and trapezoidal diffraction grating profiles) and the thickness of the surface layer is examined.

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-resolved study of the evolution of magnetic response in FexN compounds

Chen, Y., Gölden, D., Dirba, I., Huang, M., Gutfleisch, O., Nagel, P., Merz, M., Schuppler, S., Schütz, G., Alff, L., Goering, E.

{Journal of Magnetism and Magnetic Materials}, 498, NH, Elsevier, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of temperature and drive current in skyrmion dynamics

Litzius, K., Leliaert, J., Bassirian, P., Rodrigues, D., Kromin, S., Lemesh, I., Zazvorka, J., Lee, K., Mulkers, J., Kerber, N., Heinze, D., Keil, N., Reeve, R. M., Weigand, M., Van Waeyenberge, B., Schütz, G., Everschor-Sitte, K., Beach, G. S. D., Kläui, M.

{Nature Electronics}, 3(1):30-36, Springer Nature, London, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic flux penetration into micron-sized superconductor/ferromagnet bilayers

Simmendinger, J., Weigand, M., Schütz, G., Albrecht, J.

{Superconductor Science and Technology}, 33(2), IOP Pub., Bristol, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)
Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)

Denecke, R., Welke, M., Huth, P., Gräfe, J., Brachwitz, K., Lorenz, M., Grundmann, M., Ziese, M., Esquinazi, P. D., Goering, E., Schütz, G., Schindler, K., Chassé, A.

physica status solidi (b), n/a(n/a):1900627, 2020 (article)

Abstract
Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X-ray absorption spectroscopy with subsequent X-ray magnetic circular dichroism (XMCD) and magneto-optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk-like properties. This can further be confirmed by bulk-like XMCD spectra. In remanent magnetization, an in-plane magnetization with basically no out-of-plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in-plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element-specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

ei

[BibTex]

[BibTex]


no image
How to functionalise metal-organic frameworks to enable guest nanocluster embedment

King, J., Zhang, L., Doszczeczko, S., Sambalova, O., Luo, H., Rohman, F., Phillips, O., Borgschulte, A., Hirscher, M., Addicoat, M., Szilágyi, P. A.

{Journal of Materials Chemistry A}, 8(9):4889-4897, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic and microstructural properties of anisotropic MnBi magnets compacted by spark plasma sintering

Chen, Y., Gregori, G., Rheingans, B., Huang, W., Kronmüller, H., Schütz, G., Goering, E.

{Journal of Alloys and Compounds}, 830, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation and characterization of focused helical x-ray beams

Loetgering, L., Baluktsian, M., Keskinbora, K., Horstmeyer, R., Wilhein, T., Schütz, G., Eikema, K. S. E., Witte, S.

Science Advances, 6(7), American Association for the Advancement of Science, 2020 (article)

mms

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]


no image
Materials for hydrogen-based energy storage - past, recent progress and future outlook

Hirscher, M., Yartys, V. A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman Jr., R. C., Broom, D. P., Buckley, C. E., Chang, F., Chen, P., Cho, Y. W., Crivello, J., Cuevas, F., David, W. I. F., de Jongh, P. E., Denys, R. V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G. E., Grant, D. M., Gray, E. M., Hauback, B. C., He, T., Humphries, T. D., Jensen, T. R., Kim, S., Kojima, Y., Latroche, M., Li, H., Lotostskyy, M. V., Makepeace, J. W., M\oller, K. T., Naheed, L., Ngene, P., Noréus, D., Nyg\aard, M. M., Orimo, S., Paskevicius, M., Pasquini, L., Ravnsbaek, D. B., Sofianos, M. V., Udovic, T. J., Vegge, T., Walker, G. S., Webb, C. J., Weidenthaler, C., Zlotea, C.

{Journal of Alloys and Compounds}, 827, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy}
Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

Büttner, F., Mawass, M. A., Bauer, J., Rosenberg, E., Caretta, L., Avci, C. O., Gräfe, J., Finizio, S., Vaz, C. A. F., Novakovic, N., Weigand, M., Litzius, K., Förster, J., Träger, N., Groß, F., Suzuki, D., Huang, M., Bartell, J., Kronast, F., Raabe, J., Schütz, G., Ross, C. A., Beach, G. S. D.

{Physical Review Materials}, 4(1), American Physical Society, College Park, MD, 2020 (article)

Abstract
Ferrimagnetic iron garnets are promising materials for spintronics applications, characterized by ultralow damping and zero current shunting. It has recently been found that few nm-thick garnet films interfaced with a heavy metal can also exhibit sizable interfacial spin-orbit interactions, leading to the emergence, and efficient electrical control, of one-dimensional chiral domain walls. Two-dimensional bubbles, by contrast, have so far only been confirmed in micrometer-thick films. Here, we show by high resolution scanning transmission x-ray microscopy and photoemission electron microscopy that submicrometer bubbles can be nucleated and stabilized in ∼25-nm-thick thulium iron garnet films via short heat pulses generated by electric current in an adjacent Pt strip, or by ultrafast laser illumination. We also find that quasistatic processes do not lead to the formation of a bubble state, suggesting that the thermodynamic path to reaching that state requires transient dynamics. X-ray imaging reveals that the bubbles have Bloch-type walls with random chirality and topology, indicating negligible chiral interactions at the garnet film thickness studied here. The robustness of thermal nucleation and the feasibility demonstrated here to image garnet-based devices by x-rays both in transmission geometry and with sensitivity to the domain wall chirality are critical steps to enabling the study of small spin textures and dynamics in perpendicularly magnetized thin-film garnets.

mms

DOI [BibTex]

DOI [BibTex]


{Real-space imaging of confined magnetic skyrmion tubes}
Real-space imaging of confined magnetic skyrmion tubes

Birch, M. T., Cortés-Ortuño, D., Turnbull, L. A., Wilson, M. N., Groß, F., Träger, N., Laurenson, A., Bukin, N., Moody, S. H., Weigand, M., Schütz, G., Popescu, H., Fan, R., Steadman, P., Verezhak, J. A. T., Balakrishnan, G., Loudon, J. C., Twitchett-Harrison, A. C., Hovorka, O., Fangohr, H., Ogrin, F., Gräfe, J., Hatton, P. D.

Nature Communications, 11, pages: 1726, 2020 (article)

Abstract
Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Current-induced dynamical tilting of chiral domain walls in curved microwires

Finizio, S., Wintz, S., Mayr, S., Huxtable, A. J., Langer, M., Bailey, J., Burnell, G., Marrows, C. H., Raabe, J.

Applied Physics Letters, 116(18), American Institute of Physics, Melville, NY, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Room temperature ferromagnetism driven by Ca-doped BiFeO3 multiferroic functional material

Marzouk, M., Hashem, H. M., Soltan, S., Ramadan, A. A.

{Journal of Materials Science: Materials in Electronics}, 31(7):5599-5607, Springer, Norwell, MA, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]

2014


{MoSh}: Motion and Shape Capture from Sparse Markers
MoSh: Motion and Shape Capture from Sparse Markers

Loper, M. M., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1-220:13, ACM, New York, NY, USA, November 2014 (article)

Abstract
Marker-based motion capture (mocap) is widely criticized as producing lifeless animations. We argue that important information about body surface motion is present in standard marker sets but is lost in extracting a skeleton. We demonstrate a new approach called MoSh (Motion and Shape capture), that automatically extracts this detail from mocap data. MoSh estimates body shape and pose together using sparse marker data by exploiting a parametric model of the human body. In contrast to previous work, MoSh solves for the marker locations relative to the body and estimates accurate body shape directly from the markers without the use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh is able to capture soft tissue motions directly from markers by allowing body shape to vary over time. We evaluate the effect of different marker sets on pose and shape accuracy and propose a new sparse marker set for capturing soft-tissue motion. We illustrate MoSh by recovering body shape, pose, and soft-tissue motion from archival mocap data and using this to produce animations with subtlety and realism. We also show soft-tissue motion retargeting to new characters and show how to magnify the 3D deformations of soft tissue to create animations with appealing exaggerations.

ps

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]

2014


pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]


Can I recognize my body’s weight? The influence of shape and texture on the perception of self
Can I recognize my body’s weight? The influence of shape and texture on the perception of self

Piryankova, I., Stefanucci, J., Romero, J., de la Rosa, S., Black, M., Mohler, B.

ACM Transactions on Applied Perception for the Symposium on Applied Perception, 11(3):13:1-13:18, September 2014 (article)

Abstract
The goal of this research was to investigate women’s sensitivity to changes in their perceived weight by altering the body mass index (BMI) of the participants’ personalized avatars displayed on a large-screen immersive display. We created the personalized avatars with a full-body 3D scanner that records both the participants’ body geometry and texture. We altered the weight of the personalized avatars to produce changes in BMI while keeping height, arm length and inseam fixed and exploited the correlation between body geometry and anthropometric measurements encapsulated in a statistical body shape model created from thousands of body scans. In a 2x2 psychophysical experiment, we investigated the relative importance of visual cues, namely shape (own shape vs. an average female body shape with equivalent height and BMI to the participant) and texture (own photo-realistic texture or checkerboard pattern texture) on the ability to accurately perceive own current body weight (by asking them ‘Is the avatar the same weight as you?’). Our results indicate that shape (where height and BMI are fixed) had little effect on the perception of body weight. Interestingly, the participants perceived their body weight veridically when they saw their own photo-realistic texture and significantly underestimated their body weight when the avatar had a checkerboard patterned texture. The range that the participants accepted as their own current weight was approximately a 0.83 to −6.05 BMI% change tolerance range around their perceived weight. Both the shape and the texture had an effect on the reported similarity of the body parts and the whole avatar to the participant’s body. This work has implications for new measures for patients with body image disorders, as well as researchers interested in creating personalized avatars for games, training applications or virtual reality.

ps

pdf DOI Project Page Project Page [BibTex]

pdf DOI Project Page Project Page [BibTex]


Breathing Life into Shape: Capturing, Modeling and Animating {3D} Human Breathing
Breathing Life into Shape: Capturing, Modeling and Animating 3D Human Breathing

Tsoli, A., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 33(4):52:1-52:11, ACM, New York, NY, July 2014 (article)

Abstract
Modeling how the human body deforms during breathing is important for the realistic animation of lifelike 3D avatars. We learn a model of body shape deformations due to breathing for different breathing types and provide simple animation controls to render lifelike breathing regardless of body shape. We capture and align high-resolution 3D scans of 58 human subjects. We compute deviations from each subject’s mean shape during breathing, and study the statistics of such shape changes for different genders, body shapes, and breathing types. We use the volume of the registered scans as a proxy for lung volume and learn a novel non-linear model relating volume and breathing type to 3D shape deformations and pose changes. We then augment a SCAPE body model so that body shape is determined by identity, pose, and the parameters of the breathing model. These parameters provide an intuitive interface with which animators can synthesize 3D human avatars with realistic breathing motions. We also develop a novel interface for animating breathing using a spirometer, which measures the changes in breathing volume of a “breath actor.”

ps

pdf video link (url) DOI Project Page Project Page Project Page [BibTex]


3D Traffic Scene Understanding from Movable Platforms
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


no image
Method and device for blind correction of optical aberrations in a digital image

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

International Patent Application, No. PCT/EP2012/068868, April 2014 (patent)

ei

[BibTex]


Adaptive Offset Correction for Intracortical Brain Computer Interfaces
Adaptive Offset Correction for Intracortical Brain Computer Interfaces

Homer, M. L., Perge, J. A., Black, M. J., Harrison, M. T., Cash, S. S., Hochberg, L. R.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2):239-248, March 2014 (article)

Abstract
Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ± 10.1\%; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


no image
Juggling revisited — A voxel based morphometry study with expert jugglers

Gerber, P., Schlaffke, L., Heba, S., Greenlee, M., Schultz, T., Schmidt-Wilcke, T.

NeuroImage, 95, pages: 320-325, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography

Bensch, M., Martens, S., Halder, S., Hill, J., Nijboer, F., Ramos, A., Birbaumer, N., Bodgan, M., Kotchoubey, B., Rosenstiel, W., Schölkopf, B., Gharabaghi, A.

Journal of Neural Engineering, 11(2):026006, 2014 (article)

Abstract
Objective. Patients in the completely locked-in state (CLIS), due to, for example, amyotrophic lateral sclerosis (ALS), no longer possess voluntary muscle control. Assessing attention and cognitive function in these patients during the course of the disease is a challenging but essential task for both nursing staff and physicians. Approach. An electrophysiological cognition test battery, including auditory and semantic stimuli, was applied in a late-stage ALS patient at four different time points during a six-month epidural electrocorticography (ECoG) recording period. Event-related cortical potentials (ERP), together with changes in the ECoG signal spectrum, were recorded via 128 channels that partially covered the left frontal, temporal and parietal cortex. Main results. Auditory but not semantic stimuli induced significant and reproducible ERP projecting to specific temporal and parietal cortical areas. N1/P2 responses could be detected throughout the whole study period. The highest P3 ERP was measured immediately after the patient's last communication through voluntary muscle control, which was paralleled by low theta and high gamma spectral power. Three months after the patient's last communication, i.e., in the CLIS, P3 responses could no longer be detected. At the same time, increased activity in low-frequency bands and a sharp drop of gamma spectral power were recorded. Significance. Cortical electrophysiological measures indicate at least partially intact attention and cognitive function during sparse volitional motor control for communication. Although the P3 ERP and frequency-specific changes in the ECoG spectrum may serve as indicators for CLIS, a close-meshed monitoring will be required to define the exact time point of the transition.

ei

DOI [BibTex]

DOI [BibTex]


no image
Identifiability of Gaussian Structural Equation Models with Equal Error Variances

Peters, J., Bühlman, P.

Biometrika, 101(1):219-228, 2014 (article)

ei

DOI [BibTex]


no image
Quantifying the effect of intertrial dependence on perceptual decisions

Fründ, I., Wichmann, F., Macke, J.

Journal of Vision, 14(7):1-16, 2014 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Two numerical models designed to reproduce Saturn ring temperatures as measured by Cassini-CIRS

Altobelli, N., Lopez-Paz, D., Pilorz, S., Spilker, L., Morishima, R., Brooks, S., Leyrat, C., Deau, E., Edgington, S., Flandes, A.

Icarus, 238(0):205 - 220, 2014 (article)

ei

Web link (url) DOI [BibTex]

Web link (url) DOI [BibTex]


no image
Policy Evaluation with Temporal Differences: A Survey and Comparison

Dann, C., Neumann, G., Peters, J.

Journal of Machine Learning Research, 15, pages: 809-883, 2014 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Uncovering the Structure and Temporal Dynamics of Information Propagation

Gomez Rodriguez, M., Leskovec, J., Balduzzi, D., Schölkopf, B.

Network Science, 2(1):26-65, 2014 (article)

Abstract
Time plays an essential role in the diffusion of information, influence, and disease over networks. In many cases we can only observe when a node is activated by a contagion—when a node learns about a piece of information, makes a decision, adopts a new behavior, or becomes infected with a disease. However, the underlying network connectivity and transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics is important because it leads to new insights and enables forecasting, as well as influencing or containing information propagation. In this paper we model diffusion as a continuous temporal process occurring at different rates over a latent, unobserved network that may change over time. Given information diffusion data, we infer the edges and dynamics of the underlying network. Our model naturally imposes sparse solutions and requires no parameter tuning. We develop an efficient inference algorithm that uses stochastic convex optimization to compute online estimates of the edges and transmission rates. We evaluate our method by tracking information diffusion among 3.3 million mainstream media sites and blogs, and experiment with more than 179 million different instances of information spreading over the network in a one-year period. We apply our network inference algorithm to the top 5,000 media sites and blogs and report several interesting observations. First, information pathways for general recurrent topics are more stable across time than for on-going news events. Second, clusters of news media sites and blogs often emerge and vanish in a matter of days for on-going news events. Finally, major events, for example, large scale civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information pathways among blogs, and also increase the network centrality of blogs and social media sites.

ei

DOI [BibTex]


no image
Causal discovery via reproducing kernel Hilbert space embeddings

Chen, Z., Zhang, K., Chan, L., Schölkopf, B.

Neural Computation, 26(7):1484-1517, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data

Zscheischler, J., Michalak, A., Schwalm, M., Mahecha, M., Huntzinger, D., Reichstein, M., Berthier, G., Ciais, P., Cook, R., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., Zeng, N.

Global Biogeochemical Cycles, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Brain-Computer Interface Based on Self-Regulation of Gamma-Oscillations in the Superior Parietal Cortex

Grosse-Wentrup, M., Schölkopf, B.

Journal of Neural Engineering, 11(5):056015, 2014 (article)

Abstract
Objective. Brain–computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain–computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

ei

Web DOI [BibTex]


no image
CAM: Causal Additive Models, high-dimensional order search and penalized regression

Bühlmann, P., Peters, J., Ernest, J.

Annals of Statistics, 42(6):2526-2556, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Predicting Motor Learning Performance from Electroencephalographic Data

Meyer, T., Peters, J., Zander, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 11:24, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Special issue on autonomous grasping and manipulation

Ben Amor, H., Saxena, A., Hudson, N., Peters, J.

Autonomous Robots, 36(1-2):1-3, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

Probst, S., Wiehr, S., Mantlik, F., Schmidt, H., Kolb, A., Münch, P., Delcuratolo, M., Stubenrauch, F., Pichler, B., Iftner, T.

Molecular Imaging, 13(1):1536-0121, 2014 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Extreme events in gross primary production: a characterization across continents

Zscheischler, J., Reichstein, M., Harmeling, S., Rammig, A., Tomelleri, E., Mahecha, M.

Biogeosciences, 11, pages: 2909-2924, 2014 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
On power law distributions in large-scale taxonomies

Babbar, R., Metzig, C., Partalas, I., Gaussier, E., Amini, M.

SIGKDD Explorations, Special Issue on Big Data, 16(1):47-56, 2014 (article)

ei

[BibTex]

[BibTex]


no image
Indirect Robot Model Learning for Tracking Control

Bocsi, B., Csató, L., Peters, J.

Advanced Robotics, 28(9):589-599, 2014 (article)

ei

PDF DOI [BibTex]


no image
An extended approach for spatiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets

v Buttlar, J., Zscheischler, J., Mahecha, M.

Nonlinear Processes in Geophysics, 21(1):203-215, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]