Header logo is de


2020


no image
Automatic Discovery of Interpretable Planning Strategies

Skirzyński, J., Becker, F., Lieder, F.

May 2020 (article) Submitted

Abstract
When making decisions, people often overlook critical information or are overly swayed by irrelevant information. A common approach to mitigate these biases is to provide decisionmakers, especially professionals such as medical doctors, with decision aids, such as decision trees and flowcharts. Designing effective decision aids is a difficult problem. We propose that recently developed reinforcement learning methods for discovering clever heuristics for good decision-making can be partially leveraged to assist human experts in this design process. One of the biggest remaining obstacles to leveraging the aforementioned methods for improving human decision-making is that the policies they learn are opaque to people. To solve this problem, we introduce AI-Interpret: a general method for transforming idiosyncratic policies into simple and interpretable descriptions. Our algorithm combines recent advances in imitation learning and program induction with a new clustering method for identifying a large subset of demonstrations that can be accurately described by a simple, high-performing decision rule. We evaluate our new AI-Interpret algorithm and employ it to translate information-acquisition policies discovered through metalevel reinforcement learning. The results of three large behavioral experiments showed that the provision of decision rules as flowcharts significantly improved people’s planning strategies and decisions across three different classes of sequential decision problems. Furthermore, a series of ablation studies confirmed that our AI-Interpret algorithm was critical to the discovery of interpretable decision rules and that it is ready to be applied to other reinforcement learning problems. We conclude that the methods and findings presented in this article are an important step towards leveraging automatic strategy discovery to improve human decision-making.

re

Automatic Discovery of Interpretable Planning Strategies The code for our algorithm and the experiments is available [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


no image
Advancing Rational Analysis to the Algorithmic Level

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E27, March 2020 (article)

Abstract
The commentaries raised questions about normativity, human rationality, cognitive architectures, cognitive constraints, and the scope or resource rational analysis (RRA). We respond to these questions and clarify that RRA is a methodological advance that extends the scope of rational modeling to understanding cognitive processes, why they differ between people, why they change over time, and how they could be improved.

re

Advancing rational analysis to the algorithmic level DOI [BibTex]

Advancing rational analysis to the algorithmic level DOI [BibTex]


no image
Learning to Overexert Cognitive Control in a Stroop Task

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

Febuary 2020, Laura Bustamante and Falk Lieder contributed equally to this publication. (article) In revision

Abstract
How do people learn when to allocate how much cognitive control to which task? According to the Learned Value of Control (LVOC) model, people learn to predict the value of alternative control allocations from features of a given situation. This suggests that people may generalize the value of control learned in one situation to other situations with shared features, even when the demands for cognitive control are different. This makes the intriguing prediction that what a person learned in one setting could, under some circumstances, cause them to misestimate the need for, and potentially over-exert control in another setting, even if this harms their performance. To test this prediction, we had participants perform a novel variant of the Stroop task in which, on each trial, they could choose to either name the color (more control-demanding) or read the word (more automatic). However only one of these tasks was rewarded, it changed from trial to trial, and could be predicted by one or more of the stimulus features (the color and/or the word). Participants first learned colors that predicted the rewarded task. Then they learned words that predicted the rewarded task. In the third part of the experiment, we tested how these learned feature associations transferred to novel stimuli with some overlapping features. The stimulus-task-reward associations were designed so that for certain combinations of stimuli the transfer of learned feature associations would incorrectly predict that more highly rewarded task would be color naming, which would require the exertion of control, even though the actually rewarded task was word reading and therefore did not require the engagement of control. Our results demonstrated that participants over-exerted control for these stimuli, providing support for the feature-based learning mechanism described by the LVOC model.

re

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Toward a Formal Theory of Proactivity
Toward a Formal Theory of Proactivity

Lieder, F., Iwama, G.

January 2020 (article) Submitted

Abstract
Beyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue their own goals. But the extent to which they leverage this capacity varies widely across people and situations. The goal of this article is to make the mechanisms and variability of proactivity more amenable to rigorous experiments and computational modeling. We proceed in three steps. First, we develop and validate a mathematically precise behavioral measure of proactivity and reactivity that can be applied across a wide range of experimental paradigms. Second, we propose a formal definition of proactivity and reactivity, and develop a computational model of proactivity in the AX Continuous Performance Task (AX-CPT). Third, we develop and test a computational-level theory of meta-control over proactivity in the AX-CPT that identifies three distinct meta-decision-making problems: intention setting, resolving response conflict between intentions and automaticity, and deciding whether to recall context and intentions into working memory. People's response frequencies in the AX-CPT were remarkably well captured by a mixture between the predictions of our models of proactive and reactive control. Empirical data from an experiment varying the incentives and contextual load of an AX-CPT confirmed the predictions of our meta-control model of individual differences in proactivity. Our results suggest that proactivity can be understood in terms of computational models of meta-control. Our model makes additional empirically testable predictions. Future work will extend our models from proactive control in the AX-CPT to proactive goal creation and goal pursuit in the real world.

re

Toward a formal theory of proactivity DOI Project Page [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

ei

[BibTex]

[BibTex]


no image
Causal Discovery from Heterogeneous/Nonstationary Data

Huang, B., Zhang, K., J., Z., Ramsey, J., Sanchez-Romero, R., Glymour, C., Schölkopf, B.

Journal of Machine Learning Research, 21(89):1-53, 2020 (article)

ei

link (url) [BibTex]

link (url) [BibTex]

2014


no image
Method and device for blind correction of optical aberrations in a digital image

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

International Patent Application, No. PCT/EP2012/068868, April 2014 (patent)

ei

[BibTex]

2014



no image
Juggling revisited — A voxel based morphometry study with expert jugglers

Gerber, P., Schlaffke, L., Heba, S., Greenlee, M., Schultz, T., Schmidt-Wilcke, T.

NeuroImage, 95, pages: 320-325, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography

Bensch, M., Martens, S., Halder, S., Hill, J., Nijboer, F., Ramos, A., Birbaumer, N., Bodgan, M., Kotchoubey, B., Rosenstiel, W., Schölkopf, B., Gharabaghi, A.

Journal of Neural Engineering, 11(2):026006, 2014 (article)

Abstract
Objective. Patients in the completely locked-in state (CLIS), due to, for example, amyotrophic lateral sclerosis (ALS), no longer possess voluntary muscle control. Assessing attention and cognitive function in these patients during the course of the disease is a challenging but essential task for both nursing staff and physicians. Approach. An electrophysiological cognition test battery, including auditory and semantic stimuli, was applied in a late-stage ALS patient at four different time points during a six-month epidural electrocorticography (ECoG) recording period. Event-related cortical potentials (ERP), together with changes in the ECoG signal spectrum, were recorded via 128 channels that partially covered the left frontal, temporal and parietal cortex. Main results. Auditory but not semantic stimuli induced significant and reproducible ERP projecting to specific temporal and parietal cortical areas. N1/P2 responses could be detected throughout the whole study period. The highest P3 ERP was measured immediately after the patient's last communication through voluntary muscle control, which was paralleled by low theta and high gamma spectral power. Three months after the patient's last communication, i.e., in the CLIS, P3 responses could no longer be detected. At the same time, increased activity in low-frequency bands and a sharp drop of gamma spectral power were recorded. Significance. Cortical electrophysiological measures indicate at least partially intact attention and cognitive function during sparse volitional motor control for communication. Although the P3 ERP and frequency-specific changes in the ECoG spectrum may serve as indicators for CLIS, a close-meshed monitoring will be required to define the exact time point of the transition.

ei

DOI [BibTex]

DOI [BibTex]


no image
Identifiability of Gaussian Structural Equation Models with Equal Error Variances

Peters, J., Bühlman, P.

Biometrika, 101(1):219-228, 2014 (article)

ei

DOI [BibTex]


no image
Quantifying the effect of intertrial dependence on perceptual decisions

Fründ, I., Wichmann, F., Macke, J.

Journal of Vision, 14(7):1-16, 2014 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Two numerical models designed to reproduce Saturn ring temperatures as measured by Cassini-CIRS

Altobelli, N., Lopez-Paz, D., Pilorz, S., Spilker, L., Morishima, R., Brooks, S., Leyrat, C., Deau, E., Edgington, S., Flandes, A.

Icarus, 238(0):205 - 220, 2014 (article)

ei

Web link (url) DOI [BibTex]

Web link (url) DOI [BibTex]


no image
Policy Evaluation with Temporal Differences: A Survey and Comparison

Dann, C., Neumann, G., Peters, J.

Journal of Machine Learning Research, 15, pages: 809-883, 2014 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Uncovering the Structure and Temporal Dynamics of Information Propagation

Gomez Rodriguez, M., Leskovec, J., Balduzzi, D., Schölkopf, B.

Network Science, 2(1):26-65, 2014 (article)

Abstract
Time plays an essential role in the diffusion of information, influence, and disease over networks. In many cases we can only observe when a node is activated by a contagion—when a node learns about a piece of information, makes a decision, adopts a new behavior, or becomes infected with a disease. However, the underlying network connectivity and transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics is important because it leads to new insights and enables forecasting, as well as influencing or containing information propagation. In this paper we model diffusion as a continuous temporal process occurring at different rates over a latent, unobserved network that may change over time. Given information diffusion data, we infer the edges and dynamics of the underlying network. Our model naturally imposes sparse solutions and requires no parameter tuning. We develop an efficient inference algorithm that uses stochastic convex optimization to compute online estimates of the edges and transmission rates. We evaluate our method by tracking information diffusion among 3.3 million mainstream media sites and blogs, and experiment with more than 179 million different instances of information spreading over the network in a one-year period. We apply our network inference algorithm to the top 5,000 media sites and blogs and report several interesting observations. First, information pathways for general recurrent topics are more stable across time than for on-going news events. Second, clusters of news media sites and blogs often emerge and vanish in a matter of days for on-going news events. Finally, major events, for example, large scale civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information pathways among blogs, and also increase the network centrality of blogs and social media sites.

ei

DOI [BibTex]


no image
Causal discovery via reproducing kernel Hilbert space embeddings

Chen, Z., Zhang, K., Chan, L., Schölkopf, B.

Neural Computation, 26(7):1484-1517, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data

Zscheischler, J., Michalak, A., Schwalm, M., Mahecha, M., Huntzinger, D., Reichstein, M., Berthier, G., Ciais, P., Cook, R., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., Zeng, N.

Global Biogeochemical Cycles, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Brain-Computer Interface Based on Self-Regulation of Gamma-Oscillations in the Superior Parietal Cortex

Grosse-Wentrup, M., Schölkopf, B.

Journal of Neural Engineering, 11(5):056015, 2014 (article)

Abstract
Objective. Brain–computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain–computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

ei

Web DOI [BibTex]


no image
CAM: Causal Additive Models, high-dimensional order search and penalized regression

Bühlmann, P., Peters, J., Ernest, J.

Annals of Statistics, 42(6):2526-2556, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Predicting Motor Learning Performance from Electroencephalographic Data

Meyer, T., Peters, J., Zander, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 11:24, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Special issue on autonomous grasping and manipulation

Ben Amor, H., Saxena, A., Hudson, N., Peters, J.

Autonomous Robots, 36(1-2):1-3, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

Probst, S., Wiehr, S., Mantlik, F., Schmidt, H., Kolb, A., Münch, P., Delcuratolo, M., Stubenrauch, F., Pichler, B., Iftner, T.

Molecular Imaging, 13(1):1536-0121, 2014 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Extreme events in gross primary production: a characterization across continents

Zscheischler, J., Reichstein, M., Harmeling, S., Rammig, A., Tomelleri, E., Mahecha, M.

Biogeosciences, 11, pages: 2909-2924, 2014 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
On power law distributions in large-scale taxonomies

Babbar, R., Metzig, C., Partalas, I., Gaussier, E., Amini, M.

SIGKDD Explorations, Special Issue on Big Data, 16(1):47-56, 2014 (article)

ei

[BibTex]

[BibTex]


no image
Indirect Robot Model Learning for Tracking Control

Bocsi, B., Csató, L., Peters, J.

Advanced Robotics, 28(9):589-599, 2014 (article)

ei

PDF DOI [BibTex]


no image
An extended approach for spatiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets

v Buttlar, J., Zscheischler, J., Mahecha, M.

Nonlinear Processes in Geophysics, 21(1):203-215, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
On the Quantification Accuracy, Homogeneity, and Stability of Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging Systems

Schmidt, H., Schwenzer, N., Bezrukov, I., Mantlik, F., Kolb, A., Kupferschläger, J., Pichler, B.

Investigative Radiology, 49(6):373-381, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Natural Evolution Strategies

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.

Journal of Machine Learning Research, 15, pages: 949-980, 2014 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Factors controlling decomposition rates of fine root litter in temperate forests and grasslands

Solly, E., Schöning, I., Boch, S., Kandeler, E., Marhan, S., Michalzik, B., Müller, J., Zscheischler, J., Trumbore, S., Schrumpf, M.

Plant and Soil, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Causal Discovery with Continuous Additive Noise Models

Peters, J., Mooij, J., Janzing, D., Schölkopf, B.

Journal of Machine Learning Research, 15, pages: 2009-2053, 2014 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A few extreme events dominate global interannual variability in gross primary production

Zscheischler, J., Mahecha, M., v Buttlar, J., Harmeling, S., Jung, M., Rammig, A., Randerson, J., Schölkopf, B., Seneviratne, S., Tomelleri, E., Zaehle, S., Reichstein, M.

Environmental Research Letters, 9(3):035001, 2014 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Kernel methods in system identification, machine learning and function estimation: A survey

Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.

Automatica, 50(3):657-682, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

Kolb, A., Parl, C., Mantlik, F., Liu, C., Lorenz, E., Renker, D., Pichler, B.

Medical Physics, 41(8), 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Epidural electrocorticography for monitoring of arousal in locked-in state

Martens, S., Bensch, M., Halder, S., Hill, J., Nijboer, F., Ramos-Murguialday, A., Schölkopf, B., Birbaumer, N., Gharabaghi, A.

Frontiers in Human Neuroscience, 8(861), 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Simultaneous Whole-Body PET/MR Imaging in Comparison to PET/CT in Pediatric Oncology: Initial Results

Schäfer, J. F., Gatidis, S., Schmidt, H., Gückel, B., Bezrukov, I., Pfannenberg, C. A., Reimold, M., M., E., Fuchs, J., Claussen, C. D., Schwenzer, N. F.

Radiology, 273(1):220-231, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Cost-Sensitive Active Learning With Lookahead: Optimizing Field Surveys for Remote Sensing Data Classification

Persello, C., Boularias, A., Dalponte, M., Gobakken, T., Naesset, E., Schölkopf, B.

IEEE Transactions on Geoscience and Remote Sensing, 10(52):6652 - 6664, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Principles of PET/MR Imaging

Disselhorst, J. A., Bezrukov, I., Kolb, A., Parl, C., Pichler, B. J.

Journal of Nuclear Medicine, 55(6, Supplement 2):2S-10S, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
IM3SHAPE: Maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Zuntz, J., Kacprzak, T., Voigt, L., Hirsch, M., Rowe, B., Bridle, S.

Astrophysics Source Code Library, 1, pages: 09013, 2014 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Efficient nearest neighbors via robust sparse hashing

Cherian, A., Sra, S., Morellas, V., Papanikolopoulos, N.

IEEE Transactions on Image Processing, 23(8):3646-3655, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Sérsic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction

Kacprzak, T., Bridle, S., Rowe, B., Voigt, L., Zuntz, J., Hirsch, M., MacCrann, N.

Monthly Notices of the Royal Astronomical Society, 441(3):2528-2538, Oxford University Press, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Diminished White Matter Integrity in Patients with Systemic Lupus Erythematosus

Schmidt-Wilcke, T., Cagnoli, P., Wang, P., Schultz, T., Lotz, A., Mccune, W. J., Sundgren, P. C.

NeuroImage: Clinical, 5, pages: 291-297, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Information-Theoretic Bounded Rationality and ϵ-Optimality

Braun, DA, Ortega, PA

Entropy, 16(8):4662-4676, August 2014 (article)

Abstract
Bounded rationality concerns the study of decision makers with limited information processing resources. Previously, the free energy difference functional has been suggested to model bounded rational decision making, as it provides a natural trade-off between an energy or utility function that is to be optimized and information processing costs that are measured by entropic search costs. The main question of this article is how the information-theoretic free energy model relates to simple \(\epsilon\)-optimality models of bounded rational decision making, where the decision maker is satisfied with any action in an \(\epsilon\)-neighborhood of the optimal utility. We find that the stochastic policies that optimize the free energy trade-off comply with the notion of \(\epsilon\)-optimality. Moreover, this optimality criterion even holds when the environment is adversarial. We conclude that the study of bounded rationality based on \(\epsilon\)-optimality criteria that abstract away from the particulars of the information processing constraints is compatible with the information-theoretic free energy model of bounded rationality.

ei

DOI [BibTex]

DOI [BibTex]


no image
Occam’s Razor in sensorimotor learning

Genewein, T, Braun, D

Proceedings of the Royal Society of London B, 281(1783):1-7, May 2014 (article)

Abstract
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

ei

DOI [BibTex]

DOI [BibTex]