Header logo is de


2020


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI [BibTex]

2020


DOI [BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]

2010


no image
Gait planning based on kinematics for a quadruped gecko model with redundancy

Son, D., Jeon, D., Nam, W. C., Chang, D., Seo, T., Kim, J.

Robotics and Autonomous Systems, 58, 2010 (article)

pi

[BibTex]

2010


[BibTex]


no image
Flat dry elastomer adhesives as attachment materials for climbing robots

Unver, O., Sitti, M.

IEEE transactions on robotics, 26(1):131-141, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Goal-Oriented Control of Self-Organizing Behavior in Autonomous Robots

Martius, G.

Georg-August-Universität Göttingen, 2010 (phdthesis)

al

link (url) [BibTex]


no image
An experimental analysis of elliptical adhesive contact

Sümer, B., Onal, C. D., Aksak, B., Sitti, M.

Journal of Applied Physics, 107(11):113512, AIP, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Note: Aligned deposition and modal characterization of micron and submicron poly (methyl methacyrlate) fiber cantilevers

Nain, A. S., Filiz, S., Burak Ozdoganlar, O., Sitti, M., Amon, C.

Review of Scientific Instruments, 81(1):016102, AIP, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning

Chung, H., Glass, P., Pothen, J. M., Sitti, M., Washburn, N. R.

Biomacromolecules, 12(2):342-347, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]