Header logo is de


2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

2013


PDF [BibTex]


Thumb xl cover3
Statistics on Manifolds with Applications to Modeling Shape Deformations

Freifeld, O.

Brown University, August 2013 (phdthesis)

Abstract
Statistical models of non-rigid deformable shape have wide application in many fi elds, including computer vision, computer graphics, and biometry. We show that shape deformations are well represented through nonlinear manifolds that are also matrix Lie groups. These pattern-theoretic representations lead to several advantages over other alternatives, including a principled measure of shape dissimilarity and a natural way to compose deformations. Moreover, they enable building models using statistics on manifolds. Consequently, such models are superior to those based on Euclidean representations. We demonstrate this by modeling 2D and 3D human body shape. Shape deformations are only one example of manifold-valued data. More generally, in many computer-vision and machine-learning problems, nonlinear manifold representations arise naturally and provide a powerful alternative to Euclidean representations. Statistics is traditionally concerned with data in a Euclidean space, relying on the linear structure and the distances associated with such a space; this renders it inappropriate for nonlinear spaces. Statistics can, however, be generalized to nonlinear manifolds. Moreover, by respecting the underlying geometry, the statistical models result in not only more e ffective analysis but also consistent synthesis. We go beyond previous work on statistics on manifolds by showing how, even on these curved spaces, problems related to modeling a class from scarce data can be dealt with by leveraging information from related classes residing in di fferent regions of the space. We show the usefulness of our approach with 3D shape deformations. To summarize our main contributions: 1) We de fine a new 2D articulated model -- more expressive than traditional ones -- of deformable human shape that factors body-shape, pose, and camera variations. Its high realism is obtained from training data generated from a detailed 3D model. 2) We defi ne a new manifold-based representation of 3D shape deformations that yields statistical deformable-template models that are better than the current state-of-the- art. 3) We generalize a transfer learning idea from Euclidean spaces to Riemannian manifolds. This work demonstrates the value of modeling manifold-valued data and their statistics explicitly on the manifold. Specifi cally, the methods here provide new tools for shape analysis.

ps

pdf Project Page [BibTex]


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K.

30th International Conference on Machine Learning (ICML2013), 2013 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Perceiving Systems – Computers that see

Gehler, P. V.

2013 (mpi_year_book)

Abstract
Our research goal is to define in a mathematical precise way how visual perception works. We want to describe how intelligent systems understand images. To this end we study probabilistic models and statistical learning. Encoding prior knowledge about the world is complemented with automatic learning from training data. One aspect is being able to identify physical factors in images, such as lighting, geometry, and materials. Furthermore we want to automatically recognize and give names to objects and persons in images and understand the scene as a whole.

link (url) [BibTex]


no image
Being small, being smart

Liu, Na

2013 (mpi_year_book)

Abstract
Metallic nanostructures feature plasmonic resonances which spatially confine light on the nanometer scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm3 or less. We utilize such plasmonic focusing for hydrogen detection at the single particle level, which avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. This concept paves the road towards the observation of single catalytic processes in nanoreactors.

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models

Wang, Z.

Technical University Darmstadt, Germany, 2013 (phdthesis)

ei

[BibTex]


no image
Quantum kinetic theory for demagnetization after femtosecond laser pulses

Teeny, N.

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

mms

[BibTex]

[BibTex]

2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

ei

Web [BibTex]

2008


Web [BibTex]


no image
Logistic Regression for Graph Classification

Shervashidze, N., Tsuda, K.

NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

Abstract
In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression for graphs, which is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics.

ei

Web [BibTex]

Web [BibTex]


no image
New Projected Quasi-Newton Methods with Applications

Sra, S.

Microsoft Research Tech-talk, December 2008 (talk)

Abstract
Box-constrained convex optimization problems are central to several applications in a variety of fields such as statistics, psychometrics, signal processing, medical imaging, and machine learning. Two fundamental examples are the non-negative least squares (NNLS) problem and the non-negative Kullback-Leibler (NNKL) divergence minimization problem. The non-negativity constraints are usually based on an underlying physical restriction, for e.g., when dealing with applications in astronomy, tomography, statistical estimation, or image restoration, the underlying parameters represent physical quantities such as concentration, weight, intensity, or frequency counts and are therefore only interpretable with non-negative values. Several modern optimization methods can be inefficient for simple problems such as NNLS and NNKL as they are really designed to handle far more general and complex problems. In this work we develop two simple quasi-Newton methods for solving box-constrained (differentiable) convex optimization problems that utilize the well-known BFGS and limited memory BFGS updates. We position our method between projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982) methods, and prove its convergence under a simple Armijo step-size rule. We illustrate our method by showing applications to: Image deblurring, Positron Emission Tomography (PET) image reconstruction, and Non-negative Matrix Approximation (NMA). On medium sized data we observe performance competitive to established procedures, while for larger data the results are even better.

ei

PDF [BibTex]

PDF [BibTex]


no image
MR-Based PET Attenuation Correction: Initial Results for Whole Body

Hofmann, M., Steinke, F., Aschoff, P., Lichy, M., Brady, M., Schölkopf, B., Pichler, B.

Medical Imaging Conference, October 2008 (talk)

ei

[BibTex]

[BibTex]


no image
Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches

Gretton, A., Györfi, L.

19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning for Motor Primitives

Kober, J.

Biologische Kybernetik, University of Stuttgart, Stuttgart, Germany, August 2008 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Asymmetries of Time Series under Inverting their Direction

Peters, J.

Biologische Kybernetik, University of Heidelberg, August 2008 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
mGene: A Novel Discriminative Gene Finder

Schweikert, G., Zeller, G., Zien, A., Behr, J., Sonnenburg, S., Philips, P., Ong, C., Rätsch, G.

Worm Genomics and Systems Biology meeting, July 2008 (talk)

ei

[BibTex]

[BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2008 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Discovering Common Sequence Variation in Arabidopsis thaliana

Rätsch, G., Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthman, N., Hu, T., Fu, G., Hinds, D., Cheng, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D., Schneeberger, K., Bohlen, A.

16th Annual International Conference Intelligent Systems for Molecular Biology (ISMB), July 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Coding Theory in Brain-Computer Interfaces

Martens, SMM.

Soria Summerschool on Computational Mathematics "Algebraic Coding Theory" (S3CM), July 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Motor Skill Learning for Cognitive Robotics

Peters, J.

6th International Cognitive Robotics Workshop (CogRob), July 2008 (talk)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can learn tasks triggered by environmental context or higher level instruction. However, learning techniques have yet to live up to this promise as only few methods manage to scale to high-dimensional manipulator or humanoid robots. In this tutorial, we give a general overview on motor skill learning for cognitive robotics using research at ATR, USC, CMU and Max-Planck in order to illustrate the problems in motor skill learning. For doing so, we discuss task-appropriate representations and algorithms for learning robot motor skills. Among the topics are the learning basic movements or motor primitives by imitation and reinforcement learning, learning rhytmic and discrete movements, fast regression methods for learning inverse dynamics and setups for learning task-space policies. Examples on various robots, e.g., SARCOS DB, the SARCOS Master Arm, BDI Little Dog and a Barrett WAM, are shown and include Ball-in-a-Cup, T-Ball, Juggling, Devil-Sticking, Operational Space Control and many others.

ei

Web [BibTex]

Web [BibTex]


no image
Painless Embeddings of Distributions: the Function Space View (Part 1)

Fukumizu, K., Gretton, A., Smola, A.

25th International Conference on Machine Learning (ICML), July 2008 (talk)

Abstract
This tutorial will give an introduction to the recent understanding and methodology of the kernel method: dealing with higher order statistics by embedding painlessly random variables/probability distributions. In the early days of kernel machines research, the "kernel trick" was considered a useful way of constructing nonlinear algorithms from linear ones. More recently, however, it has become clear that a potentially more far reaching use of kernels is as a linear way of dealing with higher order statistics by embedding distributions in a suitable reproducing kernel Hilbert space (RKHS). Notably, unlike the straightforward expansion of higher order moments or conventional characteristic function approach, the use of kernels or RKHS provides a painless, tractable way of embedding distributions. This line of reasoning leads naturally to the questions: what does it mean to embed a distribution in an RKHS? when is this embedding injective (and thus, when do different distributions have unique mappings)? what implications are there for learning algorithms that make use of these embeddings? This tutorial aims at answering these questions. There are a great variety of applications in machine learning and computer science, which require distribution estimation and/or comparison.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning for Robotics

Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL), July 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Thin-Plate Splines Between Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

Workshop on Geometry and Statistics of Shapes, June 2008 (talk)

Abstract
With the help of differential geometry we describe a framework to define a thin-plate spline like energy for maps between arbitrary Riemannian manifolds. The so-called Eells energy only depends on the intrinsic geometry of the input and output manifold, but not on their respective representation. The energy can then be used for regression between manifolds, we present results for cases where the outputs are rotations, sets of angles, or points on 3D surfaces. In the future we plan to also target regression where the output is an element of "shape space", understood as a Riemannian manifold. One could also further explore the meaning of the Eells energy when applied to diffeomorphisms between shapes, especially with regard to its potential use as a distance measure between shapes that does not depend on the embedding or the parametrisation of the shapes.

ei

Web [BibTex]

Web [BibTex]


no image
Learning resolved velocity control

Peters, J.

2008 IEEE International Conference on Robotics and Automation (ICRA), May 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Causal inference from statistical data

Sun, X.

Biologische Kybernetik, Technische Hochschule Karlsruhe, Karlsruhe, Germany, April 2008 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in Primary Visual Cortex

Berens, P.

Biologische Kybernetik, Eberhard Karls Universität Tübingen, Tübingen, Germany, April 2008 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Bayesian methods for protein structure determination

Habeck, M.

Machine Learning in Structural Bioinformatics, April 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Development and Application of a Python Scripting Framework for BCI2000

Schreiner, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, January 2008 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Efficient and Invariant Regularisation with Application to Computer Graphics

Walder, CJ.

Biologische Kybernetik, University of Queensland, Brisbane, Australia, January 2008 (phdthesis)

Abstract
This thesis develops the theory and practise of reproducing kernel methods. Many functional inverse problems which arise in, for example, machine learning and computer graphics, have been treated with practical success using methods based on a reproducing kernel Hilbert space perspective. This perspective is often theoretically convenient, in that many functional analysis problems reduce to linear algebra problems in these spaces. Somewhat more complex is the case of conditionally positive definite kernels, and we provide an introduction to both cases, deriving in a particularly elementary manner some key results for the conditionally positive definite case. A common complaint of the practitioner is the long running time of these kernel based algorithms. We provide novel ways of alleviating these problems by essentially using a non-standard function basis which yields computational advantages. That said, by doing so we must also forego the aforementioned theoretical conveniences, and hence need some additional analysis which we provide in order to make the approach practicable. We demonstrate that the method leads to state of the art performance on the problem of surface reconstruction from points. We also provide some analysis of kernels invariant to transformations such as translation and dilation, and show that this indicates the value of learning algorithms which use conditionally positive definite kernels. Correspondingly, we provide a few approaches for making such algorithms practicable. We do this either by modifying the kernel, or directly solving problems with conditionally positive definite kernels, which had previously only been solved with positive definite kernels. We demonstrate the advantage of this approach, in particular by attaining state of the art classification performance with only one free parameter.

ei

PDF [BibTex]

PDF [BibTex]


no image
Ab-initio Elektronentheorie der magnetischen Anisotropie im System FePt mit der Clusterentwicklungsmethode

Subkow, S.

Universität Stuttgart, Stuttgart, 2008 (mastersthesis)

mms

[BibTex]


no image
Magnetism of amorphous and highly anisotropic multilayer systems on flat substrates and nanospheres

Amaladass, E. P.

Universität Stuttgart, Stuttgart, 2008 (phdthesis)

mms

link (url) [BibTex]


no image
Bose-Theorie der Dämpfung der Bewegung einer magnetischen Domänenwand

Hähnel, D.

Universität Stuttgart, Stuttgart, 2008 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
GdFe-Multilagen zur Vergrö\sserung des magnetischen Vortexkerns

Sackmann, V.

Universität Stuttgart, Stuttgart, 2008 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Dissipative Magnetisierungsdynamik: Ein Zugang über die ab-initio Elektronentheorie

Steiauf, D.

Universität Stuttgart, Stuttgart, 2008 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Röntgenzirkulardichroische Untersuchungen XMCD an FePt und Ferrit Nanopartikeln

Nolle, D.

Universität Stuttgart, Stuttgart, 2008 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Nanostructured biointerfaces for investigating cellular adhesion and differentiation

Gojak, C.

Universität Heidelberg, Heidelberg, 2008 (mastersthesis)

mms

[BibTex]

[BibTex]