Header logo is de

Magnetically and Optically Active Nanoparticles and Polymer Composites

  • 16 July 2019 • 11:00 12:00
  • Joseph B. Tracy
  • MPI-IS Stuttgart, Room 2P04

Magnetic fields and light can be used to assemble, manipulate, and heat nanoparticles (NPs) and to remotely actuate polymer composites. Simple soft robots will be presented, where incorporation of magnetic and plasmonic NPs makes them responsive to magnetic fields and light. Application of magnetic fields to dispersions of magnetic NPs drives their assembly into chains. Dipolar coupling within the chains is a source of magnetic anisotropy, and chains of magnetic NPs embedded in a polymer matrix can be used to program the response of soft robots, while still using simple architectures. Wavelength-selective photothermal triggering of shape recovery in shape memory polymers with embedded Au nanospheres and nanorods can be used to remotely drive sequential processes. Combining magnetic actuation and photothermal heating enables remote configuration, locking, unlocking, and reconfiguration of soft robots, thus increasing their capabilities. Composite and multifunctional NPs are of interest for expanding the properties and applications of NPs. Silica shells are desirable for facilitating functionalization with silanes and enhancing the stability of NPs. Methods for depositing thin silica shells with controlled morphologies onto Au nanorods and CdSe/CdS core/shell quantum dot nanorods will be presented. Silica deposition can also be accompanied by etching and breakage of the core NPs. Assembly of Fe3O4 NPs onto silica-overcoated Au nanorods allows for magnetic manipulation, while retaining the surface plasmon resonance.

Organizers: Metin Sitti

Robotic materials for the intelligent systems of the future: From soft robotics to energy capture

  • 17 July 2019 • 17:00 18:30
  • Christoph Keplinger
  • MPI-IS Stuttgart, Room 2R04

Robots today rely on rigid components and electric motors based on metal and magnets, making them heavy, unsafe near humans, expensive and ill-suited for unpredictable environments. Nature, in contrast, makes extensive use of soft materials and has produced organisms that drastically outperform robots in terms of agility, dexterity, and adaptability. The Keplinger Lab aims to fundamentally challenge current limitations of robotic hardware, using an interdisciplinary approach that synergizes concepts from soft matter physics and chemistry with advanced engineering technologies to introduce robotic materials – material systems that integrate actuation, sensing and even computation – for a new generation of intelligent systems. This talk gives an overview of fundamental research questions that inspire current and future research directions. One major theme of research is the development of new classes of actuators – a key component of all robotic systems – that replicate the sweeping success of biological muscle, a masterpiece of evolution featuring astonishing all-around actuation performance, the ability to self-heal after damage, and seamless integration with sensing. A second theme of research are functional polymers with unusual combinations of properties, such as electrical conductivity paired with stretchability, transparency, biocompatibility and the ability to self-healing from mechanical and electrical damage. A third theme of research is the discovery of new energy capture principles that can provide power to intelligent autonomous systems, as well as – on larger scales – enable sustainable solutions for the use of waste heat from industrial processes or the use of untapped sources of renewable energy, such as ocean waves.

An introduction to bladder cancer & challenges for translational research

  • 22 July 2019 • 10:30 AM - 22 April 2019 • 11:30 AM
  • Richard T Bryan
  • 2P4

New Ideas for Stereo Matching of Untextured Scenes

  • 24 July 2018 • 14:00 15:00
  • Daniel Scharstein
  • Ground Floor Seminar Room (N0.002)

Two talks for the price of one! I will present my recent work on the challenging problem of stereo matching of scenes with little or no surface texture, attacking the problem from two very different angles. First, I will discuss how surface orientation priors can be added to the popular semi-global matching (SGM) algorithm, which significantly reduces errors on slanted weakly-textured surfaces. The orientation priors serve as a soft constraint during matching and can be derived in a variety of ways, including from low-resolution matching results and from monocular analysis and Manhattan-world assumptions. Second, we will examine the pathological case of Mondrian Stereo -- synthetic scenes consisting solely of solid-colored planar regions, resembling paintings by Piet Mondrian. I will discuss assumptions that allow disambiguating such scenes, present a novel stereo algorithm employing symbolic reasoning about matched edge segments, and discuss how similar ideas could be utilized in robust real-world stereo algorithms for untextured environments.

Organizers: Anurag Ranjan

DensePose: Dense Human Pose Estimation In The Wild

  • 16 July 2018 • 11:00 12:00
  • Rıza Alp Güler
  • N3.022 (Aquarium)

Non-planar object deformations result in challenging but informative signal variations. We aim to recover this information in a feedforward manner by employing discriminatively trained convolutional networks. We formulate the task as a regression problem and train our networks by leveraging upon manually annotated correspondences between images and 3D surfaces. In this talk, the focus will be on our recent work "DensePose", where we form the "COCO-DensePose" dataset by introducing an efficient annotation pipeline to collect correspondences between 50K persons appearing in the COCO dataset and the SMPL 3D deformable human-body model. We use our dataset to train CNN-based systems that deliver dense correspondences 'in the wild', namely in the presence of background, occlusions, multiple objects and scale variations. We experiment with fully-convolutional networks and region-based DensePose-RCNN model and observe a superiority of the latter; we further improve accuracy through cascading, obtaining a system that delivers highly accurate results in real time (http://densepose.org).

Organizers: Georgios Pavlakos

Learning Control for Intelligent Physical Systems

  • 13 July 2018 • 14:15 14:45
  • Dr. Sebastian Trimpe
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

Modern technology allows us to collect, process, and share more data than ever before. This data revolution opens up new ways to design control and learning algorithms, which will form the algorithmic foundation for future intelligent systems that shall act autonomously in the physical world. Starting from a discussion of the special challenges when combining machine learning and control, I will present some of our recent research in this exciting area. Using the example of the Apollo robot learning to balance a stick in its hand, I will explain how intelligent agents can learn new behavior from just a few experimental trails. I will also discuss the need for theoretical guarantees in learning-based control, and how we can obtain them by combining learning and control theory.

Organizers: Katherine J. Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

  • Dr. Martin Hägele
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

In 1995 Fraunhofer IPA embarked on a mission towards designing a personal robot assistant for everyday tasks. In the following years Care-O-bot developed into a long-term experiment for exploring and demonstrating new robot technologies and future product visions. The recent fourth generation of the Care-O-bot, introduced in 2014 aimed at designing an integrated system which addressed a number of innovations such as modularity, “low-cost” by making use of new manufacturing processes, and advanced human-user interaction. Some 15 systems were built and the intellectual property (IP) generated by over 20 years of research was recently licensed to a start-up. The presentation will review the path from an experimental platform for building up expertise in various robotic disciplines to recent pilot applications based on the now commercial Care-O-bot hardware.

Organizers: Katherine J. Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

  • Prof. Dr. Dawn Bonnell
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

With the ubiquity of catalyzed reactions in manufacturing, the emergence of the device laden internet of things, and global challenges with respect to water and energy, it has never been more important to understand atomic interactions in the functional materials that can provide solutions in these spaces.

Organizers: Katherine J. Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

  • Prof. Dr. Thomas Ertl
  • MPI-IS, Stuttgart, Lecture Hall 2 D5

Big Data has become the general term relating to the benefits and threats which result from the huge amount of data collected in all parts of society. While data acquisition, storage and access are relevant technical aspects, the analysis of the collected data turns out to be at the core of the Big Data challenge. Automatic data mining and information retrieval techniques have made much progress but many application scenarios remain in which the human in the loop plays an essential role. Consequently, interactive visualization techniques have become a key discipline of Big Data analysis and the field is reaching out to many new application domains. This talk will give examples from current visualization research projects at the University of Stuttgart demonstrating the thematic breadth of application scenarios and the technical depth of the employed methods. We will cover advances in scientific visualization of fields and particles, visual analytics of document collections and movement patterns as well as cognitive aspects.

Organizers: Katherine J. Kuchenbecker Ildikó Papp-Wiedmann Matthias Tröndle Claudia Daefler

  • Carl E. Rasmussen
  • MPI IS Lecture Hall Tübingen

Gaussian Processes are a principled, practical, probabilistic approach to learning in flexible non-parametric models and have found numerous applications in regression, classification, unsupervised learning and reinforcement learning. Inference, learning and prediction can be done exactly on small data sets with Gaussian likelihood. In more realistic application with large scale data and more complicated likelihoods approximations are necessary. The variational framework for approximate inference in Gaussian processes has emerged recently as a highly effective and practical tool. I will review and demonstrate the capabilities of this framework applied to non-linear state space models.

Organizers: Philipp Hennig

  • Weiqiang Chen Ph.D.
  • Stuttgart

Taking advantages of state-of-art micro/nanotechnologies, fascinating functional biomaterials and integrated biosystems, we can address numerous important problems in fundamental biology as well as clinical applications in cancer diagnosis and treatment.

Organizers: Peer Fischer

  • Robin Thandiackal
  • 2P4, Stuttgart MPI IS

Exciting talk on modeling anguilliform swimming, robotic testing.

Organizers: Steve Heim Alexander Badri-Sprowitz